Skip to main content

Nuclear Export of mRNAs with Disease Pathogenesis and Therapeutic Implications

  • Chapter
  • First Online:
Messenger RNA Therapeutics

Part of the book series: RNA Technologies ((RNATECHN,volume 13))

Abstract

In eukaryotes, RNA polymerase II genes are transcribed to mRNAs, processed in the nucleus, and then exported to the cytoplasm through the nuclear pore complex for translation to proteins. Thus, eukaryotic gene expression is regulated at multiple steps via coordinated actions of a large number of proteins in different cellular compartments. In this chapter, we describe how gene expression is controlled at the level of mRNA export from nucleus to the cytoplasm with implications for disease pathogenesis and therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4E-SE:

eIF4E sensitivity element

AD:

Alzheimer’s disease

AML-1:

Acute myeloid leukemia

AREX:

Alternative mRNA export

ARE:

AU-rich elements

ALS:

Amyotrophic lateral sclerosis

ASOs:

Antisense oligonucleotides

CBC:

Cap-binding complex

CETN2/3:

Centrin2/3

CIP29:

29 kDa cytokine-induced protein

CRM1:

Chromosome region maintenance 1

DBP5:

DEAD-box protein 5

DSS1:

Deletion of Suv3 suppressor 1

DUB:

De-ubiquitination

ENY2:

Enhancer of yellow 2

FACT:

Facilitates chromatin transcription

FDA:

Food and drug administration

FTD:

Frontotemporal dementia

GANP:

Germinal –center-associated nuclear protein

GLE1:

GLFG (glycine–leucine-phenylalanine–glycine) lethal

HD:

Huntington’s disease

HECT:

Homologous to E6AP carboxyl terminus

HuR:

Human antigen R

IP6:

Inositol hexaphosphate

iPSC:

Induced pluripotent stem cells

LAAHD:

Lethal arthrogryposis with anterior horn cell disease

LEF-1:

Lymphoid enhancer-binding factor 1

LCCS1:

Lethal congenital contracture syndrome 1

LRR:

Leucine-rich repeat

LRPPRC:

Leucine-rich pentatricopeptide repeat-containing

MAP1:

Microtubule-associated protein 1

MBLN1:

Muscleblind-like 1

MDS:

Myelodysplastic syndromes

MDM2:

Mouse double minute 2 homolog

mRNP:

Messenger ribonucleoprotein

NEDD8:

Neural precursor cell expressed developmentally down-regulated 8

NES:

Nuclear export signal

NPC:

Nuclear pore complex

NTF2L:

Nuclear transport factor 2-like

Nups:

Nucleoporins

NXF1:

Nuclear RNA export factor 1

NXT1:

Nuclear transport factor 2-like export factor 1

PCID2:

PCI domain containing 2

Ran:

Ras-related nuclear protein

RanBP3:

Ran-binding protein 3

Ran-GAP:

Ran GTPase activating protein

RBD:

RNA-binding domain

RING:

Really interesting new gene

RRM:

RNA recognition motif

SAGA:

Spt-Ada-Gcn5-acetyltransferase

SCF:

Skp1-cullin1-F-box

SCA7:

Spinocerebellar ataxia type 7

SGF73:

SAGA-associated factor 73 kDa

SINE:

Selective inhibitors of nuclear export

TDP43:

TAR DNA-binding protein 43

THOC1:

THO complex 1

TREX:

Transcription export

UAP56:

U2AF65-associated protein 56

UBA:

Ubiquitin-associated

UBM:

UAP56-binding motif

UIF:

UAP56 interacting factor

UPS:

Ubiquitin proteasome system

USP2:

Ubiquitin-specific protease 2

UTR:

Untranslated region

References

  • Abdul Razak AR, Mau-Soerensen M, Gabrail NY et al (2016) First-in-class, first-in-human phase I study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors. J Clin Oncol 34:4142–4150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agudo D, Gómez-Esquer F, Martínez-Arribas F et al (2004) Nup88 mRNA overexpression is associated with high aggressiveness of breast cancer. Int J Cancer 109:717–720

    Article  CAS  PubMed  Google Scholar 

  • Aibara S, Katahira J, Valkov E et al (2015) The principal mRNA nuclear export factor NXF1: NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA. Nucleic Acids Res 43:1883–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcazar-Roman AR, Tran EJ, Guo S et al (2006) Inositol hexakisphosphate and gle1 activate the dead-box protein dbp5 for nuclear mRNA export. Nat Cell Biol 8:711–716

    Article  CAS  PubMed  Google Scholar 

  • Aleo E, Henderson CJ, Fontanini A et al (2006) Identification of new compounds that trigger apoptosome-independent caspase activation and apoptosis. Cancer Res 66:9235–9244

    Article  CAS  PubMed  Google Scholar 

  • Altun M, Kramer HB, Willems LI et al (2011) Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol 18:1401–1412

    Article  CAS  PubMed  Google Scholar 

  • Amos JS, Huang L, Thevenon J et al (2017) Autosomal recessive mutations in THOC6 cause intellectual disability: syndrome delineation requiring forward and reverse phenotyping. Clin Genet 91:92–99

    Article  CAS  PubMed  Google Scholar 

  • Assouline S, Culjkovic B, Cocolakis E et al (2009) Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood 114:257–260

    Article  CAS  PubMed  Google Scholar 

  • Bachi A, Braun IC, Rodrigues JP et al (2000) The c-terminal domain of tap interacts with the nuclear pore complex and promotes export of specific cte-bearing RNA substrates. RNA 6:136–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu CL, Huang L, Innes AM et al (2013) Intellectual disability associated with a homozygous missense mutation in THOC6. Orphanet J Rare Dis 8:1–8

    Article  Google Scholar 

  • Berson A, Goodman LD, Sartoris AN et al (2019) Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathol Commun 7:1–10

    Article  Google Scholar 

  • Bischoff FR, Krebber H, Smirnova E et al (1995) Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J 14:705–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Björk P, Wieslander L (2015) The Balbiani ring story: synthesis, assembly, processing, and transport of specific messenger RNA–protein complexes. Annu Rev Biochem 84:65–92

    Article  PubMed  CAS  Google Scholar 

  • Blevins MB, Smith AM, Phillips EM (2003) Complex formation among the RNA export proteins Nup98, Rae1/Gle2, and TAP. J Biol Chem 278:20979–20988

    Article  CAS  PubMed  Google Scholar 

  • Boehringer A, Bowser R (2018) RNA nucleocytoplasmic transport defects in neurodegenerative diseases. Adv Neurobiol. 20:85–101

    Article  PubMed  Google Scholar 

  • Borden KL (2021) The nuclear pore complex and mRNA export in cancer. Cancers 13:42

    Article  CAS  Google Scholar 

  • Braun IC, Herold A, Rode M et al (2002) Nuclear export of mRNA by tap/nxf1 requires two nucleoporin-binding sites but not p15. Mol Cell Biol 22:5405–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruhn L, Munnerlyn A, Grosschedl R (1997) ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev 11:640–653

    Article  CAS  PubMed  Google Scholar 

  • Camus V, Miloudi H, Taly A et al (2017) XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy. J Hematol Oncol 10:1–13

    Article  CAS  Google Scholar 

  • Capelson M, Hetzer MW (2009) The role of nuclear pores in gene regulation, development and disease. EMBO Rep 10:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Rosas S, Weber C, Fievet L et al (2018) Loss of zebrafish Ataxin-7, a SAGA subunit responsible for SCA7 retinopathy, causes ocular coloboma and malformation of photoreceptors. Hum Mol Genet 28:912–927

    Article  CAS  Google Scholar 

  • Chakraborty P, Wang Y, Wei JH et al (2008) Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev Cell 15:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CT, Hautbergue GM, Walsh MJ et al (2013) Chtop is a component of the dynamic TREX mRNA export complex. EMBO J 32:473–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang MT, Asthana S, Gao SP et al (2016) Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 4:155–163

    Article  CAS  Google Scholar 

  • Chang MT, Bhattarai TS, Schram AM et al (2018) Accelerating discovery of functional mutant alleles in cancer. Cancer Discov 8:174–183

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Catley L, Li G et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–419

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Tian Z, Nicholson B et al (2012) A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22:345–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin K, DeVries S, Fridlyand J et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10:529–541

    Article  CAS  PubMed  Google Scholar 

  • Consortium APG (2017) AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov 7:818–831

    Article  Google Scholar 

  • Culjkovic-Kraljacic B, Borden KL (2013) Aiding and abetting cancer: mRNA export and the nuclear pore. Trends Cell Biol 23:328–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neuron 72:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dela Peña IJI, Botanas CJ, de la Peña JB et al (2019) The Atxn7-overexpressing mice showed hyperactivity and impulsivity which were ameliorated by atomoxetine treatment: A possible animal model of the hyperactive-impulsive phenotype of ADHD. Prog Neuropsychopharmacol Biol Psychiatry 88:311–319

    Article  PubMed  CAS  Google Scholar 

  • Di Gregorio E, Bianchi FT, Schiavi A et al (2013) A de novo X;8 translocation creates a PTK2-THOC2 gene fusion with THOC2 expression knockdown in a patient with psychomotor retardation and congenital cerebellar hypoplasia. J Med Genet 50:543–551

    Article  PubMed  CAS  Google Scholar 

  • Domínguez-Sánchez MS, Barroso S, Gómez-González B et al (2011) Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet 7:e1002386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dufu K, Livingstone MJ, Seebacher J et al (2010) ATP is required for interactions between UAP56 and two conserved mRNA export proteins, Aly and CIP29, to assemble the TREX complex. Genes Dev 24:2043–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan K, Umen JG, Guthrie C (2000) A putative ubiquitin ligase required for efficient mRNA export differentially affects hnRNP transport. Curr Biol 10:687–696

    Article  CAS  PubMed  Google Scholar 

  • Durairaj G, Garg P, Bhaumik SR (2009) Nuclear export of mRNA and its regulation by ubiquitylation. RNA Biol 6:531–535

    Article  CAS  PubMed  Google Scholar 

  • Durairaj G, Sen R, Uprety B et al (2014a) Sus1p facilitates pre-initiation complex formation at the SAGA-regulated genes independently of histone H2B De-ubiquitylation. J Mol Biol 426:2928–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durairaj G, Lahudkar S, Bhaumik SR (2014b) A new regulatory pathway of mRNA export by an F-box protein, Mdm30. RNA (new York, NY) 20:133–142

    Article  CAS  Google Scholar 

  • Durairaj G, Malik S, Bhaumik SR (2017) Regulatory mechanisms of eukaryotic gene expression. Gene regulation, epigenetics and hormone signaling (Editor: S. Mandal). Wiley-VCH, Germany. 1:1–28

    Google Scholar 

  • Fahrenkrog B, Harel A (2018) Perturbations in traffic: aberrant nucleocytoplasmic transport at the heart of neurodegeneration. Cells 7:232

    Article  CAS  PubMed Central  Google Scholar 

  • Fan J, Kuai B, Wang K et al (2018) mRNAs are sorted for export or degradation before passing through nuclear speckles. Nucleic Acids Res 46:8404–8416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleckner J, Zhang M, Valcarcel J et al (1997) U2AF65 recruits a novel human DEAD box protein required for the U2 snRNP-branchpoint interaction. Genes Dev 11:1864–1872

    Article  CAS  PubMed  Google Scholar 

  • Frankland-Searby S, Bhaumik SR (2012) The 26S proteasome complex: an attractive target for cancer therapy. Biochim Biophys Acta 1825:64–76

    CAS  PubMed  Google Scholar 

  • Fribourg S, Braun IC, Izaurralde E et al (2001) Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol Cell 8:645–656

    Article  CAS  PubMed  Google Scholar 

  • Fu SC, Huang HC, Horton P et al (2013) ValidNESs: a database of validated leucine-rich nuclear export signals. Nucleic Acids Res 41:D338-343

    Article  CAS  PubMed  Google Scholar 

  • Fujimura S, Xing Y, Takeya M et al (2005) Increased expression of germinal center-associated nuclear protein RNA-primase is associated with lymphomagenesis. Cancer Res 65:5925–5934

    Article  CAS  PubMed  Google Scholar 

  • Gasset-Rosa F, Chillon-Marinas C, Goginashvili A et al (2017) Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport. Neuron 94:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golomb L, Bublik DR, Wilder S et al (2012) Importin 7 and exportin 1 link c-Myc and p53 to regulation of ribosomal biogenesis. Mol Cell 45:222–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golovanov AP, Hautbergue GM, Tintaru AM et al (2006) The solution structure of REF2-I reveals interdomain interactions and regions involved in binding mRNA export factors and RNA. RNA 12:1933–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graux C, Cools J, Melotte C et al (2004) Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nature Genet 36:1084–1089

    Article  CAS  PubMed  Google Scholar 

  • Gravina GL, Senapedis W, McCauley D et al (2014) Nucleo-cytoplasmic transport as a therapeutic target of cancer. J Hematol Oncol 7:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griaud F, Pierce A, Sanchez MG et al (2013) (2013) A pathway from leukemogenic oncogenes and stem cell chemokines to RNA processing via THOC5. Leukemia 27:932–940

    Article  CAS  PubMed  Google Scholar 

  • Gruter P, Tabernero C, von Kobbe C et al (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1:649–659

    Article  CAS  PubMed  Google Scholar 

  • Guha S, Bhaumik SR (2021) Viral regulation of mRNA export with potentials for targeted therapy. Biochim Biophys Acta Gene Regul Mech 1864:194655

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Hakimi MA, Baillat D et al (2005) Linking transcriptional elongation and messenger RNA export to metastatic breast cancers. Cancer Res 65:3011–3016

    Article  CAS  PubMed  Google Scholar 

  • Guyenet SJ, Mookerjee SS, Lin A et al (2015) Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction. Hum Mol Genet 24:3908–3917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwizdek C, Hobeika M, Kus B et al (2005) The mRNA nuclear export factor Hpr1 is regulated by Rsp5-mediated ubiquitylation. J Biol Chem 280:13401–13405

    Article  CAS  PubMed  Google Scholar 

  • Gwizdek C, Iglesias N, Rodriguez MS et al (2006) Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription. Proc Natl Acad Sci USA 103:16376–16381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammell CM, Gross S, Zenklusen D et al (2002) Coupling of termination, 3′ processing, and mRNA export. Mol Cell Biol 22:6441–6457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargous Y, Hautbergue GM, Tintaru AM et al (2006) Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8. EMBO J 25:5126–5137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hariri F, Arguello M, Volpon L et al (2013) The eukaryotic translation initiation factor eIF4E is a direct transcriptional target of NF-κB and is aberrantly regulated in acute myeloid leukemia. Leukemia 27:2047–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hautbergue GM, Hung ML, Golovanov AP et al (2008) Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc Natl Acad Sci USA 105:5154–5159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hautbergue GM, Hung ML, Walsh MJ et al (2009) UIF, a New mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA. Curr Biol 19:1918–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath CG, Viphakone N, Wilson SA (2016) The role of TREX in gene expression and disease. Biochem J 473:2911–2935

    Article  CAS  PubMed  Google Scholar 

  • Helmlinger D, Tora L, Devys D (2006) Transcriptional alterations and chromatin remodeling in polyglutamine diseases. Trends Genet 22:562–570

    Article  CAS  PubMed  Google Scholar 

  • Hideshima T, Richardson PG, Anderson KC (2011) Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol Cancer Ther 10:2034–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilleren P, McCarthy T, Rosbash M et al (2001) Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 413:538–542

    Article  CAS  PubMed  Google Scholar 

  • Hocine S, Singer RH, Grünwald D (2010) RNA processing and export. Cold Spring Harb Perspect Biol 2:a000752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Gattoni R, Stevenin J et al (2003) Sr splicing factors serve as adapter proteins for tap-dependent mRNA export. Mol Cell 11:837–843

    Article  CAS  PubMed  Google Scholar 

  • Hung ML, Hautbergue GM, Snijders AP et al (2010) Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1. Nucleic Acids Res 38:3351–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias N, Tutucci E, Gwizdek C et al (2010) Ubiquitin-mediated mRNP dynamics and surveillance prior to budding yeast mRNA export. Genes Dev 24:1927–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakubowiak AJ, Dytfeld D, Griffith KA et al (2012) A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood 120:1801–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jani D, Lutz S, Hurt E et al (2012) Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Res 40:4562–4573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Li X, Huang H et al (2014) Elevated levels of mitochondrion-associated autophagy inhibitor LRPPRC are associated with poor prognosis in patients with prostate cancer. Cancer 120:1228–1236

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Zhong W, Huang H et al (2015) Autophagy defects suggested by low levels of autophagy activator MAP1S and high levels of autophagy inhibitor LRPPRC predict poor prognosis of prostate cancer patients. Molecular Carcinog 54:1194–1204

    Article  CAS  Google Scholar 

  • Johnson C, Primorac D, McKinstry M et al (2000) Tracking Col1a1 RNA in Osteogenesis imperfectasplice-defective transcripts initiate transport from the gene but are retained within the Sc35 domain. J Cell Biol 150:417–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabachinski G, Schwartz TU (2015) The nuclear pore complex—structure and function at a glance. J Cell Sci 128:423–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor S (2013) Usp22 and its evolving role in systemic carcinogenesis. Lung Cancer 79:191

    Article  PubMed  Google Scholar 

  • Kapuria V, Peterson LF, Fang D et al (2010) Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res 70:9265–9276

    Article  CAS  PubMed  Google Scholar 

  • Karacosta LG, Kuroski LA, Hofmann WA et al (2016) Nucleoporin 62 and Ca2+/calmodulin dependent kinase kinase 2 regulate androgen receptor activity in castrate resistant prostate cancer cells. Prostate 76:294–306

    Article  CAS  PubMed  Google Scholar 

  • Katahira J, Dimitrova L, Imai Y et al (2015) NTF2-like domain of tap plays a critical role in cargo mRNA recognition and export. Nucleic Acids Res 43:1894–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehlenbach RH, Dickmanns A, Kehlenbach A et al (1999) A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J Cell Biol 145:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiesler E, Miralles F, Visa N (2002) HEL/UAP56 binds cotranscriptionally to the Balbiani ring pre-mRNA in an intron-independent manner and accompanies the BR mRNP to the nuclear pore. Curr Biol 12:859–862

    Article  CAS  PubMed  Google Scholar 

  • Kim J, McMillan E, Kim HS et al (2016) XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer. Nature 538:114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Choi Y, Kim H et al (2019) SAGA DUBm-mediated surveillance regulates prompt export of stress-inducible transcripts for proteostasis. Nat Commun 10:2458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kinoshita Y, Kalir T, Dottino P et al (2012) Nuclear distributions of NUP62 and NUP214 suggest architectural diversity and spatial patterning among nuclear pore complexes. PLoS ONE 7:e36137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler A, Schneider M, Cabal GG et al (2008) Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat Cell Biol 10:707–715

    Article  PubMed  CAS  Google Scholar 

  • Koster M, Lykke-Andersen S, Elnakady YA et al (2003) Ratjadones inhibit nuclear export by blocking CRM1/exportin 1. Exp Cell Res 286:321–331

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Corbett MA, Van Bon BW et al (2015) THOC2 mutations implicate mRNA-export pathway in X-linked intellectual disability. Am J Hum Genet 97:302–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuruvilla J, Savona M, Baz R et al (2017) Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood 129:3175–3183

    Article  CAS  PubMed  Google Scholar 

  • La Spada AR (1998) Spinocerebellar Ataxia Type 7. 1998 Aug 27 (updated 2020 Jul 23). In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A (eds) GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle 1993–2021

    Google Scholar 

  • Lee KK, Swanson SK, Florens L et al (2009) Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes. Epigenetics Chromatin 2:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Wang X, Zhang X et al (2005) Human hHpr1/p84/Thoc1 regulates transcriptional elongation and physically links RNA polymerase II and RNA processing factors. Mol Cell Biol 25:4023–4033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Lv L, Zheng J et al (2014) The significance of LRPPRC overexpression in gastric cancer. Med Oncol 31:818

    Article  PubMed  CAS  Google Scholar 

  • Libri D, Dower K, Boulay J et al (2002) Interactions between mRNA export commitment, 30-endquality control, and nuclear degradation. Mol Cell Biol 22:8254–8266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liker E, Fernandez E, Izaurralde E et al (2000) The structure of the mRNA export factor TAP reveals a cis arrangement of a non-canonical RNP domain and an LRR domain. EMBO J 19:5587–5598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund MK, Guthrie C (2005) The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol Cell 20:645–651

    Article  CAS  PubMed  Google Scholar 

  • Luo ML, Zhou Z, Magni K et al (2001) Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413:644–647

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wan J, Kong Y et al (2018a) Inhibition of CRL-NEDD8 pathway as a new approach to enhance ATRA-induced differentiation of acute promyelocytic leukemia cells. Int J Med Sci 15:674–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wong CC, Gong B et al (2018b) Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene 37:148–159

    Article  CAS  PubMed  Google Scholar 

  • Mateos-Aierdi AJ, Goicoechea M, Aiastui A et al (2015) Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 7:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattioli F, Isidor B, Abdul-Rahman O et al (2019) Clinical and functional characterization of recurrent missense variants implicated in THOC6-related intellectual disability. Hum Mol Genet 28:952–960

    Article  CAS  PubMed  Google Scholar 

  • Melo-Cardenas J, Xu Y, Wei J et al (2018) USP22 deficiency leads to myeloid leukemia upon oncogenic Kras activation through a PU.1-dependent mechanism. Blood 132:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes A, Fahrenkrog B (2019) NUP214 in leukemia: it’s more than transport. Cells 8:76

    Article  CAS  PubMed Central  Google Scholar 

  • Mertz JA, Kobayashi R, Dudley JP (2007) ALY is a common coactivator of RUNX1 and c-Myb on the type B leukemogenic virus enhancer. J Virol 81:3503–3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan RD, Workman JL, Abmayr SM (2014) Drosophila models reveal novel insights into mechanisms underlying neurodegeneration. Fly 8:148–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Montpetit B, Thomsen ND, Helmke KJ et al (2011) A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature 472:238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooventhan A, Nivethitha L (2017) Evidence based effects of yoga in neurological disorders. J Clin Neurosci 43:61–67

    Article  CAS  PubMed  Google Scholar 

  • Mutka SC, Yang WQ, Dong SD et al (2009) Identification of nuclear export inhibitors with potent anticancer activity in vivo. Cancer Res 69:510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy Z, Seneviratne JA, Kanikevich M et al (2021) An ALYREF-MYCN coactivator complex drives neuroblastoma tumorigenesis through effects on USP3 and MYCN stability. Nat Commun 12:1–20

    Article  CAS  Google Scholar 

  • Nemergut ME, Lindsay ME, Brownawell AM et al (2002) Ran-binding protein 3 links Crm1 to the ran guanine nucleotide exchange factor. J Biol Chem 277:17385–17388

    Article  CAS  PubMed  Google Scholar 

  • Neumann S, Petfalski E, Brugger B et al (2003) Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Rep 4:1156–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu C, Prakash TP, Kim A et al (2018) Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia type 7. Sci Transl Med 10:eaap8677

    Google Scholar 

  • Nousiainen HO, Kestila M, Pakkasjarvi N et al (2008) Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nat Genet 40:155–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osinalde N, Olea M, Mitxelena J et al (2013) The nuclear protein ALY binds to and modulates the activity of transcription factor E2F2. Mol Cell Proteom 12:1087–1098

    Article  CAS  Google Scholar 

  • Park JE, Miller Z, Jun Y et al (2018) Next-generation proteasome inhibitors for cancer therapy. Transl Res 198:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puente XS, Bea S, Valdes-Mas R et al (2015) Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526:519–524

    Article  CAS  PubMed  Google Scholar 

  • Rajanala K, Nandicoori VK (2012) Localization of nucleoporin Tpr to the nuclear pore complex is essential for Tpr mediated regulation of the export of unspliced RNA. PLoS ONE 7:e29921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran PS, Boudreau RL, Schaefer KA et al (2014) Non- allele specific silencing of ataxin-7 improves phenotypes in a mouse model of Spinocerebellar ataxia type 7. Mol Ther 22:1635–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezano A, Kuwahara K, Yamamoto-Ibusuki M et al (2013) Breast cancers with high DSS1 expression that potentially maintains BRCA2 stability have poor prognosis in the relapse-free survival. BMC Cancer 13:1–12

    Article  CAS  Google Scholar 

  • Richter J, Madduri D, Richard S et al (2020) Selinexor in relapsed/refractory multiple myeloma. Ther Adv Hematol 11:2040620720930629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues JP, Rode M, Gatfield D et al (2001) REF proteins mediate the export of spliced and unspliced mRNAs from the nucleus. Proc Natl Acad Sci USA 98:1030–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MS, Gwizdek C, Haguenauer-Tsapis R et al (2003) The HECT ubiquitin ligase Rsp5p is required for proper nuclear export of mRNA in Saccharomyces cerevisiae. Traffic 4:566–575

    Article  CAS  PubMed  Google Scholar 

  • Saez B, Walter MJ, Graubert TA (2017) Splicing factor gene mutations in hematologic malignancies. Blood 129:1260–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito S, Nouno K, Shimizu R et al (2008) Impairment of erythroid and megakaryocytic differentiation by a leukemia-associated and t(9;9)-derived fusion gene product, SET/TAF-Ibeta-CAN/Nup214. J Cell Physiol 214:322–333

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Kasamatsu A, Yamamoto A et al (2013) Aly as a potential contributor to metastasis in human oral squamous cell carcinoma. J Cancer Res Clin Oncol 139:585–594

    Article  CAS  PubMed  Google Scholar 

  • Sakuma S, D’Angelo MA (2017) The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Semin Cell Dev Biol 68:72–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambataro F, Pennuto M (2017) Post-translational modifications and protein quality control in motor neuron and polyglutamine diseases. Front Mol Neurosci 10:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saran S, Tran DDH, Ewald F et al (2016) Depletion of three combined THOC5 mRNA export protein target genes synergistically induces human hepatocellular carcinoma cell death. Oncogene 35:3872–3879

    Article  CAS  PubMed  Google Scholar 

  • Scott LM, Rebel VI (2013) Acquired mutations that affect pre-mRNA splicing in hematologic malignancies and solid tumors. J Natl Can Inst 105:1540–1549

    Article  CAS  Google Scholar 

  • Sen R, Bhaumik SR (2013) Transcriptional stimulatory and repressive functions of histone H2B ubiquitin ligase. Transcription 4:221–226

    Article  PubMed  Google Scholar 

  • Sen R, Barman P, Kaja A et al (2019) Distinct functions of the cap-binding complex in stimulation of nuclear mRNA export. Mol Cell Biol 39:e00540-e618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen A, Wang Y, Zhao Y et al (2009) Expression of crm1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery 65:153–159

    Article  PubMed  Google Scholar 

  • Shukla A, Bajwa P, Bhaumik SR (2006) SAGA-associated Sgf73p facilitates formation of the preinitiation complex assembly at the promoters either in a HAT-dependent or independent manner in vivo. Nucleic Acids Res 34:6225–6232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla A, Bhaumik SR (2007) H2B–K123 ubiquitination stimulates RNAPII elongation independent of H3–K4 methylation. Biochem Biophys Res Commun 359:214–220

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Durairaj G, Schneider J et al (2009) Stimulation of mRNA export by an F-box protein, Mdm30p, in vivo. J Mol Biol 389:238–247

    Article  CAS  PubMed  Google Scholar 

  • Singh U, Samaiya A, Mishra RK (2020) Overexpressed Nup88 stabilized through interaction with Nup62 promotes NFκB dependent pathways in cancer. bioRxiv

    Google Scholar 

  • Sun Q, Carrasco YP, Hu Y et al (2013) Nuclear export inhibition through covalent conjugation and hydrolysis of leptomycin B by CRM1. Proc Natl Acad Sci USA 110:1303–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Chen X, Zhou Q et al (2016) Inhibiting cancer cell hallmark features through nuclear export inhibition. Signal Transduct Target Ther 1:16010

    Article  PubMed  PubMed Central  Google Scholar 

  • Taagepera S, McDonald D, Loeb JE et al (1998) Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci USA 95:7457–7462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor J, Sendino M, Gorelick AN et al (2019) Altered nuclear export signal recognition as a driver of oncogenesis. Cancer Discov 9:1452–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topisirovic I, Guzman ML, McConnell MJ et al (2003) Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis. Mol Cell Biol 23:8992–9002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JG, Dawson J, Sullivan DM (2012) Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 83:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Umlauf D, Bonnet J, Waharte F et al (2013) The human TREX-2 complex is stably associated with the nuclear pore basket. J Cell Sci 126:2656–2667

    CAS  PubMed  Google Scholar 

  • Valkov E, Dean JC, Jani D et al (2012) Structural basis for the assembly and disassembly of mRNA nuclear export complexes. Biochim Biophys Acta 1819:578–592

    Article  CAS  PubMed  Google Scholar 

  • Van der Watt PJ, Maske CP, Hendricks DT et al (2009) The karyopherin proteins, crm1 and karyopherin beta1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int J Cancer 124:1829–1840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vasudevan S, Peltz SW (2003) Nuclear mRNA surveillance. Curr Opin Cell Biol 15:332–337

    Article  CAS  PubMed  Google Scholar 

  • Viphakone N, Hautbergue GM, Walsh M et al (2012) TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat Commun 3:1006

    Article  PubMed  CAS  Google Scholar 

  • Virbasius CM, Wagner S, Green MR (1999) A human nuclear-localized chaperone that regulates dimerization, DNA binding, and transcriptional activity of bZIP proteins. Mol Cell 4:219–228

    Article  CAS  PubMed  Google Scholar 

  • Vitaliano-Prunier A, Babour A, Hérissant L et al (2012) H2B ubiquitylation controls the formation of export-competent mRNP. Mol Cell 45:132–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogl DT, Dingli D, Cornell RF et al (2018) Selective inhibition of nuclear export with oral selinexor for treatment of relapsed or refractory multiple myeloma. J Clin Oncol 36:859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AY, Weiner H, Green M et al (2018) A phase I study of selinexor in combination with high-dose cytarabine and mitoxantrone for remission induction in patients with acute myeloid leukemia. J Hematol Oncol 11:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Li Y, Xu B et al (2021) ALYREF drives cancer cell proliferation through an ALYREF-MYC positive feedback loop in glioblastoma. OncoTargets Ther 14:145–155

    Article  Google Scholar 

  • Weathington NM, Mallampalli RK (2014) Emerging therapies targeting the ubiquitin proteasome system in cancer. J Clin Invest 124:6–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickramasinghe VO, McMurtrie PIA, Mills AD et al (2010) mRNA export from mammalian cell nuclei is dependent on GANP. Curr Biol 20:25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weirich CS, Erzberger JP, Flick JS et al (2006) Activation of the dexd/h-box protein dbp5 by the nuclear-pore protein gle1 and its coactivator insp6 is required for mRNA export. Nat Cell Biol 8:668–676

    Article  CAS  PubMed  Google Scholar 

  • Xiong F, Lin Y, Han Z et al (2012) Plk1-mediated phosphorylation of UAP56 regulates the stability of UAP56. Mol Biol Rep 39:1935–1942

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Powers MA (2009) Nuclear pore proteins and cancer. Semin Cell Dev Biol 20:620–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Fujiwara N, Yukinaga H et al (2010) The closely related RNA helicases, UAP56 and URH49, preferentially form distinct mRNA export machineries and coordinately regulate mitotic progression. Mol Biol Cell 21:2953–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Li Y, Khoury T et al (2008) Relationships of hHpr1/p84/Thoc1 expression to clinicopathologic characteristics and prognosis in non-small cell lung cancer. Ann Clin Lab Sci 38:105–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young JE, Gouw L, Propp S et al (2007) Proteolytic cleavage of ataxin-7 by caspase-7 modulates cellular toxicity and transcriptional dysregulation. J Biol Chem 282:30150–30160

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Miehlke S, Ebert MP et al (2000) Frequency of TPR–MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer 88:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen S, Yoo S et al (2008) Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Zhang HY, Ma YD, Zhang Y, Cui J, Wang ZM (2017) Elevated levels of autophagy-related marker ULK1 and mitochondrion-associated autophagy inhibitor LRPPRC are associated with biochemical progression and overall survival after androgen deprivation therapy in patients with metastatic prostate cancer. J Clin Pathol 70(5):383–389

    Google Scholar 

  • Zhang J, Zhai J, Wong CC et al (2021) A novel amplification gene PCI domain containing 2 (PCID2) promotes colorectal cancer through directly degrading a tumor suppressor promyelocytic leukemia (PML). Oncogene 40:1–12

    Article  CAS  Google Scholar 

  • Zhou S, Cai Y, Liu X et al (2021) Role of H2B mono-ubiquitination in the initiation and progression of cancer. Bull Cancer 108:385–398

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the Bhaumik laboratory was supported by National Institutes of Health grants (1R15GM088798-01, 1R15GM088798-02, and 1R15GM088798-03), a National Scientist Development Grant (0635008N) from American Heart Association, Grants-in-aid from the American Heart Association (10GRNT4300059 and 15GRNT25700298), a Research Scholar Grant (06-52) from American Cancer Society, a Mallinckrodt Foundation Award, and multiple internal grants from Southern Illinois University. Shalini Guha is supported by the doctoral fellowship of Southern Illinois University, Carbondale. We apologize to the authors whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukesh R. Bhaumik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guha, S., Barman, P., Manawa, A., Bhaumik, S.R. (2022). Nuclear Export of mRNAs with Disease Pathogenesis and Therapeutic Implications. In: Jurga, S., Barciszewski, J. (eds) Messenger RNA Therapeutics. RNA Technologies, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-031-08415-7_17

Download citation

Publish with us

Policies and ethics