Skip to main content

Improving the Cook et al. Proximity Bound Given Integral Valued Constraints

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2022)

Abstract

Consider a linear program of the form \(\max \{\boldsymbol{c}^{\top }\boldsymbol{x}:\boldsymbol{A}\boldsymbol{x}\le \boldsymbol{b}\}\), where \(\boldsymbol{A}\) is an \(m\times n\) integral matrix. In 1986 Cook, Gerards, Schrijver, and Tardos proved that, given an optimal solution \(\boldsymbol{x}^{*}\), if an optimal integral solution \(\boldsymbol{z}^{*}\) exists, then it may be chosen such that \(\left\| \boldsymbol{x}^{*}-\boldsymbol{z}^{*}\right\| _{\infty }<n\varDelta \), where \(\varDelta \) is the largest magnitude of any subdeterminant of \(\boldsymbol{A}\). Since then an open question has been to improve this bound, assuming that \(\boldsymbol{b}\) is integral valued too. In this manuscript we show that \(n\varDelta \) can be replaced with whenever \(n\ge 2\) and \(\boldsymbol{x}^{*}\) is a vertex. We also show that, in certain circumstances, the factor n can be removed entirely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Their upper bound is stated as \(n\cdot \max \big \{\varDelta _{k}(\boldsymbol{A}):\ k=1,\ldots ,n\big \}\), but their argument actually yields an upper bound of \(n\cdot \varDelta _{n-1}\left( \boldsymbol{A}\right) \). Furthermore, their result holds for any (not necessarily vertex) optimal LP solution \(\boldsymbol{x}^*\).

References

  1. Aliev, I., Celaya, M., Henk, M., Williams, A.: Distance-sparsity transference for vertices of corner polyhedra. SIAM J. Optim. 31, 200–126 (2021). https://doi.org/10.1137/20M1353228

    Article  MathSciNet  MATH  Google Scholar 

  2. Aliev, I., Henk, M., Oertel, T.: Distances to lattice points in knapsack polyhedra. Math. Program. 175–198 (2019). https://doi.org/10.1007/s10107-019-01392-1

  3. Cook, W., Gerards, A., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Math. Program. 34, 251–264 (1986). https://doi.org/10.1007/BF01582230

    Article  MathSciNet  MATH  Google Scholar 

  4. Del Pia, A., Ma, M.: Proximity in concave integer quadratic programming. arXiv:2006.01718 (2021)

  5. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorithms 16, 1–14 (2020). https://doi.org/10.1145/3340322

    Article  MathSciNet  MATH  Google Scholar 

  6. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104, 91–104 (2005). https://doi.org/10.1007/s10107-004-0570-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Granot, F., Skorin-Kapov, J.: Some proximity and sensitivity results in quadratic integer programming. Math. Program. 47, 259–268 (1990). https://doi.org/10.1007/BF01580862

    Article  MathSciNet  MATH  Google Scholar 

  8. Gruber, P.: Convex and Discrete Geometry. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  9. Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much harder than linear optimization. J. ACM 37, 843–862 (1990). https://doi.org/10.1145/96559.96597

    Article  MathSciNet  MATH  Google Scholar 

  10. Jansen, K., Rohwedder, L.: On integer programming and convolution. In: 10th Innovations in Theoretical Computer Science, vol. 43, pp. 43:1–43:17 (2019). https://doi.org/10.4230/LIPIcs.ITCS.2019.43

  11. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Improving proximity bounds using sparsity. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds.) ISCO 2020. LNCS, vol. 12176, pp. 115–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53262-8_10

    Chapter  Google Scholar 

  12. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Polynomial upper bounds on the number of differing columns of \(\Delta \)-modular integer programs. arXiv:2105.08160 (2021)

  13. Mahler, K.: Ein übertragungsprinzip für konvexe Körper. Časopis Pešt. Mat. Fyz. 68, 93–102 (1939). (in German)

    Google Scholar 

  14. Nägele, M., Santiago, R., Zenklusen, R.: Congruency-constrained TU problems beyond the bimodular case. In: Proceedings of SODA 2022. arXiv:2109.03148 (2022)

  15. Oertel, T., Paat, J., Weismantel, R.: The distributions of functions related to parametric integer optimization. SIAM J. Appl. Algebra Geom. 422–440 (2020). https://doi.org/10.1137/19M1275954

  16. Paat, J., Weismantel, R., Weltge, S.: Distances between optimal solutions of mixed-integer programs. Math. Program. 455–468 (2018). https://doi.org/10.1007/s10107-018-1323-z

  17. Santos, F.: A counterexample to the Hirsch Conjecture. Ann. Math. 176, 383–412 (2012). https://doi.org/10.4007/annals.2012.176.1.7

    Article  MathSciNet  MATH  Google Scholar 

  18. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  19. Veselov, S., Chirkov, A.: Integer programming with bimodular matrix. Discret. Optim. 6, 220–222 (2009). https://doi.org/10.1016/j.disopt.2008.12.002

    Article  MATH  Google Scholar 

  20. Werman, M., Magagnosc, D.: The relationship between integer and real solutions of constrained convex programming. Math. Program. 51, 133–135 (1991). https://doi.org/10.1007/BF01586929

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, L., Lee, J.: On proximity for k-regular mixed-integer linear optimization. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) WCGO 2019. AISC, vol. 991, pp. 438–447. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21803-4_44

    Chapter  Google Scholar 

Download references

Acknowledgements

The third author was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant [RGPIN-2021-02475]. The fourth author was supported by the Einstein Foundation Berlin. The authors are grateful to the referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Celaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Celaya, M., Kuhlmann, S., Paat, J., Weismantel, R. (2022). Improving the Cook et al. Proximity Bound Given Integral Valued Constraints. In: Aardal, K., Sanità, L. (eds) Integer Programming and Combinatorial Optimization. IPCO 2022. Lecture Notes in Computer Science, vol 13265. Springer, Cham. https://doi.org/10.1007/978-3-031-06901-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06901-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06900-0

  • Online ISBN: 978-3-031-06901-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics