Skip to main content

The Role of PI3K Isoforms in Autoimmune Disease

  • Chapter
  • First Online:
PI3K and AKT Isoforms in Immunity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 436))

Abstract

Aberrant overactivation of the immune system can give rise to chronic and persistent self-attack, culminating in autoimmune disease. This is currently managed therapeutically using potent immunosuppressive and anti-inflammatory drugs. Class I phosphoinositide-3-kinases (PI3Ks) have been identified as ideal therapeutic targets for autoimmune diseases given their wide-ranging roles in immunological processes. Although progress has been hampered by issues such as poor drug tolerance and drug resistance, several PI3K inhibitors have now received regulatory approval with many others in development, including several intended to suppress the immune response in autoimmune and inflammatory diseases. This chapter reviews the evidence for contribution of aberrant PI3K activity to a range of autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and type I diabetes) and possible therapeutic application of isoform-specific PI3K inhibitors as immunosuppressive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APDS:

Activated PI3Kδ Syndrome

CNS:

Central nervous system

CIA:

Collagen-induced arthritis (CIA)

fMLP:

N-formylmethionyl-leucyl-phenylalanine

(h)TNFα:

Human tumour necrosis factor-α

MMPS:

Matrix metalloproteinases

MS:

Multiple sclerosis

mTORC2:

MTOR complex 2

NOD:

Non-obese diabetic

PDK-1:

Phosphoinositide-dependent kinase-1

PH:

pleckstrin homology

PI3K:

phosphoinositide-3-kinase

PIP2:

Phosphatidylinositol-(4,5)-bisphosphate

PIP3:

Phosphatidylinositol-(3,4,5)-trisphosphate

RA:

Rheumatoid arthritis

SLE:

Systemic lupus erythematosus

References

  • Angulo I, Vadas O, Garcon F, Banham-Hall E, Plagnol V, Leahy TR, Baxendale H, Coulter T, Curtis J, Wu C, Blake-Palmer K, Perisic O, Smyth D, Maes M, Fiddler C, Juss J, Cilliers D, Markelj G, Chandra A, Farmer G, Kielkowsja A, Clark J, Kracker S, Debre M, Picard C, Pellier I, Jabado N, Morris JA, Barcenas-Morales FA, Stephens L, Hawkins P, Barrett JC, Abinun M, Clatworthy M, Durandy A, Doffinger R, Chilvers ER, Cant AJ, Kumararatne D, Okkenhaug K, Williams RL, Condliffe A, Nejentsev S (2013) Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science 342:866–871

    Article  CAS  Google Scholar 

  • Azzi J, Moore RF, Elyaman W, Mounayar M, El Haddad N, Yang S, Jurewicz M, Takakura A, Petrelli A, Fiorina P, Ruckle T, Abdi R (2012) The novel therapeutic effect of PI3Kγ inhibitor AS605240 in autoimmune diabetes. Diabetes 61:1509–1518

    Article  CAS  Google Scholar 

  • Ball JS, Archer S, Ward SG (2014) PI3K inhibitors as potential therapeutics for autoimmune disease. Drug Discov Today 19:1195–1199

    Article  CAS  Google Scholar 

  • Barber DF, Bartolome A, Hernandez C, Flores JM, Redondo C, Fernandez-Arias C, Camps M, Ruckle T, Schwarz MK, Rodríguez S, Martinez-A C, Balomenos D, Rommel C, Carrera AC, Camps M, Ruckle T, Schwarz MK, Rodriiguez S, Carlos-Martinez A, Balomenos D, Rommel C, Carrera A (2005) PI3Kγ inhibition blocks glomerulonephritis and extends lifespan in a muse model of systemic lupus. Nat Med 11:933–935

    Google Scholar 

  • Barber DF, Bartolome A, Hernandez C, Flores JM, Redondo C, Fernandez-Arias C, Borlardo L, Hirsch E, Wymann M, Balomenos D, Carrera A (2006) Class 1B phosphatidylinositol 3-kinase (PI3K) deficiency ameliorates 1A-PI3K-induced systemic lupus, but not T cell activation. J Immunol 176:589–593

    Article  CAS  Google Scholar 

  • Bartok B, Boyle DL, Liu Y, Ren P, Ball ST, Bugbee WD, Rommel C, Firestein GS (2012) PI3Kγ is a key regulator of synoviocyte function in rheumatoid arthritis. Am J Pathol 180:1906–1916

    Article  CAS  Google Scholar 

  • Bergamini G, Bell K, Shimamura S, Werner T, Cansfield A, Müller K, Perrin J, Rau C, Ellard K, Hopf C, Doce A, daniel Leggate D, Mangano R, Mathieson T, O’Mahony A, Plavec I, Rharbaoui F, Reinhard F, Savitski MS, Ramsden N, Hirsch E, Drewes G, Rausch O, Bantscheff M, Neubauer G (2012) A selective inhibitor reveals PI3Kγ dependence of Th17 cell differentiation. Nat Chem Biol 8:576–582

    Google Scholar 

  • Berod L, Heinemann C, Heink S, Escher A, Stadelmann C, Drube S, Wetzker R, Norgauer J, Kamradt T (2011) PI3Kγ deficiency delays the onset of experimental autoimmune encephalomyelitis and ameliorates its clinical outcome. Eur J Immunol 41:833–844

    Google Scholar 

  • Blunt MD, Ward SG (2012) Targeting PI3K isoforms and SHIP in the immune system: new therapeutics for inflammation and leukemia. Curr Opin Pharmacol 12:444–451

    Article  CAS  Google Scholar 

  • Camps M, Ruckle T, Ji H, Ardissone V, Rintelen F, Shaw J, Ferrandi C, Chabert C, Gillieron C, Francon B, Martin T, Gretener D, Perrin D, Leroy D, Vitte PA, Hirsch E, Wymann MP, Cirillo R, Schwarz MK, Rommel C (2005) Blockade of PI3Kγ suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 11:936–943

    Article  CAS  Google Scholar 

  • Cantor H, Haskins K (2007) Recruitment and activation of macrophages by pathogenic CD4 T cells in type 1 diabets: evidence for involvement of CCR8 and CCL1. J Immunol 179:5760–5757

    Article  CAS  Google Scholar 

  • Cohen SB, Bainter W, Johnson JL, Lin TY, Wong JC, Wallace JG, Jones J, Qureshi S, Mir F, Qamar F, Cantley LC, Geha RS, Choud J (2019) Human primary immunodeficiency caused by expression of a kinase-dead p110delta mutant. J Allergy Clin Immunol. 143:797–799

    Article  CAS  Google Scholar 

  • Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, Goodlad JR, Farmer G, Steele CL, Leahy T, Doffinger R, Baxendale H, Bernatoniene J, Edgar DM, Longhurst HJ, Ehl S, Speckmann C, Grimbacher B, Cant J (2017) Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: a large patient cohort study. J Allergy Clin Immunol 139:597–606

    Article  CAS  Google Scholar 

  • Durand CA, Richer MJ, Brenker K, Graves M, Shanina I, Choi K, Horwitz MS, Puri KD, Gold MR (2013) Selective pharmacological inhibition of PI3Kδ opposes the progression of autoimmune diabetes in non-obese diabetic (NOD) mice. Autoimmunity 46:62–73

    Article  CAS  Google Scholar 

  • Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361

    Article  CAS  Google Scholar 

  • Foster J, Blunt MD, Carter E, Ward SG (2012) Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol Rev 64:1027–1054

    Google Scholar 

  • Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, Barrientos JC, Zelenetz, Kipps TJ, Flinn I, Ghia P, Eradat H, Ervin T, Lamanna N, Coiffier B, Pettitt AR, Ma S, Stilgenbauer S, Cramer P, Aiello M, Johnson DM, Miller LL, Li D (2014) Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 370:997–1007

    Google Scholar 

  • Ge F, Wang F, Yan X, Li Z, Wang X (2017) Association of BAFF with PI3K/Akt/mTOR signaling in lupus nephritis. Mol Med Rep 16:5793–5798

    Google Scholar 

  • Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, Flinn I, Flowers CR, Martin P, Viardot A, Blum KA, Goy AH, Davies AJ, Zinzani PL, Dreyling M, Johnson D, Miller LL, Holes L, Li D, Dansey RD, Godfrey WR, Salles GA (2014) PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 370:1008–1018

    Article  CAS  Google Scholar 

  • Guo JP, Coppola D, Cheng JQ (2011) IKBKE activates Akt independent of phosphatidylinositol 3-kinase/PDK1/mTORC2 and PH domain to sustain malignant transformation. J Biol Chem 286:37389–37398

    Article  CAS  Google Scholar 

  • Haselmayer P, Camps M, Muzerelle M, El Bawab S, Waltzinger C, Bruns L, Abla N, Polokoff MA, Jond-Necand C, Gaudet M, Benoit A, Meier DB, Martin C, Gretener D, Lombardi MS, Grenningloh R, Ladel C, Petersen JS, Gaillard P, Ji H (2014) Characterization of novel PI3Kδ Inhibitors as potential therapeutics for SLE and lupus nephritis in pre-clinical studies. Front Immunol 5:233–238

    Google Scholar 

  • Hayer S, Pundt N, Peters MA, Wunrau C, Kuhnel I, Neugebauer K, Strietholt S, Zwerina J, Korb A, Penninger J, Joosten LAB, Gay S, Ruckle T, Schett G, Pap T (2009) PI3Kγ regulates cartilage damage in chronic inflammatory arthritis. FASEB J 23:4288–4298

    Google Scholar 

  • Haylock-Jacobs S, Comerford I, Bunting M, Kara E, Townley S, Klingler-Hoffmann M, Vanhaesebroeck B, Puri KD, McColl SR (2011) PI3Kδ drives the pathogenesis of experimental autoimmune encephalomyelitis by inhibiting effector T cell apoptosis and promoting Th17 differentiation. J Autoimmun 36:278–287

    Article  CAS  Google Scholar 

  • Hawkins PT, Stephens LR (2015) PI3K signalling in inflammation. Biochim Biophys Acta 1851:882–897

    Article  CAS  Google Scholar 

  • Henley T, Kovesdi D, Turner M (2008) B-cell responses to B-cell activation factor of the TNF family (BAFF) are impaired in the absence of PI3Kδ. Eur J Immunol 38:3543–3548

    Article  CAS  Google Scholar 

  • Ilic N, Utermark T, Widlund HR, Roberts TM (2011) PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis Proc. Natl Acad Sci USA 108:E699–E708

    Article  CAS  Google Scholar 

  • Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, Ruiz-Irastorza HG (2016) Systemic Lupus Erythematosus. Nat Rev Dis Primers 2:16039

    Article  Google Scholar 

  • Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G (1991) Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10:40245–31

    Google Scholar 

  • Kleinschek MA, Owyang AM, Joyce-Shaikh B, Langrish CL, Chen Y, Gorman DM, Blumenschein WM, McClanahan T, Brombacher F, Hurst SD, Kastalein RA, Cua DJ (2007) IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 204:161–170

    Google Scholar 

  • Kulkarni S, Sitaru C, Jakus Z, Anderson KE, Damoulakis G, Davidson K, Hirose M, Juss J, Oxley D, Chessa TA (2011) PI3Kβ plays a critical role in neutrophil activation by immune complexes. Sci Signal 4:ra23

    Google Scholar 

  • Li GM, Liu HM, Guan WZ, Xu H, Wu BW, Feng JY, Sun L (2019) A mutation in PIK3CD gene causing pediatric systemic lupus erythematosus: a case report. Medicine 98:e15329

    Article  CAS  Google Scholar 

  • Li H, Park D, Abdul-Muneer PM, Xu B, Wang H, Xing B, Wu D, Li S (2013) PI3Kγ inhibition alleviates symptoms and increases axon number in experimental autoimmune encephalomyelitis mice. Neuroscience 253:89–99

    Article  CAS  Google Scholar 

  • Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, Avery D, Moens L, Cannons JL, Biancalana M, Stoddard J, Ouyang W, Frucht DM, Rao VK, Atkinson TP, Agharahimi A, Hussey A, Folio LR, Olivier KN, Fleisher TA, Pittaluga S, Holland SM, Cohen JI, Oliveira JB, Tangye SG, Schwartzberg PL, Lenaardo MJ, Uzel G (2014) Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol 15:88–97

    Article  CAS  Google Scholar 

  • Lucas CL, Chandra A, Nejentsev S, Condliffe AM, Okkenhaug K (2016) PI3Kdelta and primary immuno-deficiencies. Nat Rev Immunol 16:702–714

    Article  CAS  Google Scholar 

  • Maxwell MJ, Tsantikos E, Kong AM, Vanhaesebroeck B, Tarlinton DM, Hibbs ML (2012) Attenuation of PI3Kδ signaling restrains autoimmune disease. J Autoimmun 38:381–91

    Google Scholar 

  • Randis TM, Puri KD, Zhou H, Diacovo TG (2008) Role of PI3Kδ and PI3Kγ in inflammatory arthritis and tissue localization of neutrophils. Eur J Immunol. 38:1215–1224

    Google Scholar 

  • Rodrigues DH, Vilela MC, Barcelos LS, Pinho V, Teixeira MM, Teixeira AL (2010) Absence of PI3Kγ leads to increased leukocyte apoptosis and diminished severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 222:90–94

    Article  CAS  Google Scholar 

  • Serreze DV, Chapman HD, Varnum DS, Hanson MS, Keifsnyder PC, Richard SD, Fleming SA, Leiter EH, Shultz LD (1996) B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new ‘‘speed congenic’’ stock of NOD.Igμ-null mice. J Exp Med 184:2049–2053

    Google Scholar 

  • Sharfe N, Karanxha A, Dadi H, Merico D, Chitayat D, Herbrick JA, Freeman S, Grinstein S, Roifman CM (2018) Dual loss of p110delta PI3-kinase and SKAP expression leads to combined immunodeficiency and multisystem syndromic features. J Allergy Clin Immunol 142:618–629

    Article  CAS  Google Scholar 

  • Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE (2005) Identification and characterisation of circulating human transitional B cells. Blood 105:4390–4398

    Article  CAS  Google Scholar 

  • Simon Q, Pers JO, Cornec D, Le Pottier L, Mageed RA, Hillion S (2016) In-depth characterization of CD24(high)CD38(high) transitional human B cells reveals different regulatory profile. J Allergy Clin Immunol 137:1577–1584

    Google Scholar 

  • Sogkas G, Fedchenko M, Dhingra A, Jablonka A, Schmidt R, Atschekzei F (2019) Primary immunodeficiency disorder caused by phosphoinositide 3-kinase delta deficiency. J Allergy Clin Immunol 142:1650–1653

    Article  Google Scholar 

  • Swan DJ, Aschenbrenner D, Lamb CA, Chakraborty K, Clark J, Pandey S, Engelhardt KR, Chen R, Cavounidis A, Ding Y, Krasnogor N, Carey CD, Acres M, Needham S, Cant AJ, Arkwright PD, Chandra A, Okkenhaug K, Uhlig HH, Hambleton S (2019) Immunodeficiency, autoimmune thrombocytopenia and enterocolitis caused by autosomal recessive deficiency of PIK3CD-encoded phosphoinositide 3-kinase delta. Haematologica 104:e483–e486

    Article  Google Scholar 

  • Suarez-Fueyo A, Barber DF, Martínez-Ara J, Zea-Mendoza AC, Carrera AC (2011) Enhanced PI3Kδ activity is a frequent event in systemic lupus erythematosus that confers resistance to activation induced T cell death. J Immunol 187:2376–2385

    Google Scholar 

  • Suárez-Fueyo A, Rojas JM, Cariaga AE, García E, Steiner BH, Barber DF, Puri KD, Carrera AC (2014) Inhibition of PI3Kδ reduces kidney infiltration by macrophages and ameliorates systemic lupus in the mouse. J Immunol 193:544–544

    Article  Google Scholar 

  • Stark AK, Chandra A, Chakraborty K, Alam R, Carnonaro V, Clark J, Sriskantharajah S, Bradley G, Richter AG, Banham-Hall E, Clatworthy MR, Nejentsev S, Hamblin JN, Hessel EM, Condliffe AM, Okkenhaug K (2018) PI3Kdelta hyper-activation promotes development of B cells that exacerbate Streptococcus pneumoniae infection in an antibody-independent manner. Nat Commun 9:3174

    Google Scholar 

  • Stark AK, Davenport ECM, Patton DT, Scudamore CL, Vanhaesebroeck B, Veldhoen M, Garden OA, Okkenhaug K (2020) Loss of phosphatidylinositol 3-kinase activity in regulatory T cells leads to neuronal inflammation. J Immunol 205:78–89

    Google Scholar 

  • Toro-Domínguez D, Pedro Carmona-Sáez P, Alarcón-Riquelme MW (2017) Support for PI3K and mTOR inhibitors as treatment for lupus using in-silico drug-repurposing analysis. Arthritis Res Ther 19:54–62

    Google Scholar 

  • Toyama S, Tamura N, Haruta K, Karakida T, Mori S, Watanabe T, Yamori T, Takasaki Y (2010) Inhibitory effects of ZSTK474, a novel phosphoinositide 3-kinase inhibitor, on osteoclasts and collagen-induced arthritis in mice. Arthritis Res Ther 12:R92

    Article  Google Scholar 

  • Vanhaesebroeck B, Perry MWD, Brown JR, André F, Okkenhaug K (2021) PI3K inhibitors are finally coming of age. Nat Rev Drug Discov 20:741–769.  https://doi.org/10.1038/s41573-021-00209-1

  • Wang Y, Zhang L, Wei P, Zhang H, Liu C (2014) Inhibition of PI3Kδ improves systemic lupus in mice. Inflammation 37:978–983

    Article  CAS  Google Scholar 

  • Winkler DG, Faia KL, DiNitto JP, Ali JA, White KF, Brophy EE, Pink MM, Proctor JL, Lussier J, Martin CM, Hoyt JG, Tillotson B, Murphy EL, Lim AR, Thomas BD, Macdougall JR, Ren P, Liu Y, Li LS, Jessen KA, Fritz CC, Dunbar JL, Porter JR, Rommel C, Palombella VJ, Changelian PS, Kutok JL (2013) PI3Kδ and PI3Kγ inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem Biol 20:1364–1374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ward, S.G. (2022). The Role of PI3K Isoforms in Autoimmune Disease. In: Dominguez-Villar, M. (eds) PI3K and AKT Isoforms in Immunity . Current Topics in Microbiology and Immunology, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-031-06566-8_14

Download citation

Publish with us

Policies and ethics