Skip to main content

Security and Privacy Concerns for Healthcare Wearable Devices and Emerging Alternative Approaches

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2021)

Abstract

The wide use of wearable devices rises a lot of concerns about the privacy and security of personal data that are collected and stored by such services. This concern is even higher when such data is produced by healthcare monitoring wearable devices and thus the impact of any data leakage is more significant. In this work a classification of the wearable devices used for healthcare monitoring is conducted, and the most prominent relevant privacy and security issues and concerns are presented. Furthermore, a brief review of alternative approaches that can eliminate most of such issues, including federated learning, homomorphic encryption, and tinyML, is presented. The aim of this work is to present the privacy and security concerns in healthcare monitoring wearable devices, as well as some solutions in hot topics about these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, L., et al.: Wearable health devices in health care: narrative systematic review. JMIR Mhealth Uhealth 8(11), e18907 (2020)

    Article  Google Scholar 

  2. Olson, J.S., Redkar, S.: A survey of wearable sensor networks in health and entertainment. MOJ Appl. Bionics Biomech. 2(5), 280–287 (2018)

    Article  Google Scholar 

  3. Future Marketing Insights. https://www.futuremarketinsights.com/reports/wearable-gaming-technology-market. Accessed 21 Oct 2021

  4. Seneviratne, S., et al.: A survey of wearable devices and challenges. IEEE Commun. Surv. Tutorials 19(4), 2573–2620 (2017)

    Article  Google Scholar 

  5. Jain, S., Borgiattino, C., Ren, Y., Gruteser, M., Chen, Y., Chiasserini, C.F.: Lookup: enabling pedestrian safety services via shoe sensing. In: Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, pp. 257–271 (2015)

    Google Scholar 

  6. Mokaya, F., Lucas, R., Noh, H.Y., Zhang, P.: Myovibe: vibration based wearable muscle activation detection in high mobility exercises. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 27–38 (2015)

    Google Scholar 

  7. ILLINOIS.EDU. https://news.illinois.edu/view/6367/233722. Accessed 21 Oct 2021

  8. Kim, J., et al.: Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. Acs Sens. 1(8), 1011–1019 (2016)

    Article  Google Scholar 

  9. Gruenerbl, A., Pirkl, G., Monger, E., Gobbi, M., Lukowicz, P.: Smart-watch life saver: smart-watch interactive-feedback system for improving bystander CPR. In: Proceedings of the 2015 ACM International Symposium on Wearable Computers, pp. 19–26 (2015)

    Google Scholar 

  10. Google Glass. https://www.google.com/glass/start/. Accessed 21 Oct 2021

  11. Tanuwidjaja, E., et al.: Chroma: a wearable augmented-reality solution for color blindness. In: Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing, pp. 799–810 (2014)

    Google Scholar 

  12. Nēsos - Treat diseases by harnessing the power of the brain to regulate immune function.https://nesos.com. Accessed 21 Oct 2021

  13. Ōura ring: accurate health information accessible to everyone.https://ouraring.com. Accessed 21 Oct 2021

  14. Rahman, T., et al.: BodyBeat: a mobile system for sensing non-speech body sounds. In: MobiSys, vol. 14, no. 10.1145, pp. 2–594 (2014)

    Google Scholar 

  15. Cilliers, L.: Wearable devices in healthcare: privacy and information security issues. Health Inf. Manag. J. 49(2–3), 150–156 (2020)

    Google Scholar 

  16. Wearable device usage 2021. (n.d.). Statista. https://www.statista.com/forecasts/1101110/wearables-devices-usage-in-selected-countries. Accessed 22 Oct 2021

  17. Wearables sales volume in Russia 2021. (n.d.). Statista. https://www.statista.com/statistics/1243485/number-of-wearables-sold-in-russia/. Accessed 22 Oct 2021

  18. Wearable medical devices market Latin America 2025. (n.d.). Statista. https://www.statista.com/statistics/800329/wearable-medical-devices-market-value-latin-america/. Accessed 22 Oct 2021

  19. Khan, S., Parkinson, S., Grant, L., Liu, N., McGuire, S.: Biometric systems utilising health data from wearable devices: applications and future challenges in computer security. ACM Comput. Surv. (CSUR) 53(4), 1–29 (2020)

    Article  Google Scholar 

  20. Mehraeen, E., Ghazisaeedi, M., Farzi, J., Mirshekari, S.: Security challenges in healthcare cloud computing: a systematic. Glob. J. Health Sci. 9(3) (2017)

    Google Scholar 

  21. Celdrán, A.H., et al.: PROTECTOR: towards the protection of sensitive data in Europe and the US. Comput. Netw. 181, 107448 (2020)

    Article  Google Scholar 

  22. Montgomery, K., Chester, J., Kopp, K.: Health wearables: ensuring fairness, preventing discrimination, and promoting equity in an emerging Internet-of-Things environment. J. Inf. Policy 8, 34–77 (2018)

    Article  Google Scholar 

  23. Bellekens, X.J., Nieradzinska, K., Bellekens, A., Seeam, P., Hamilton, A.W., Seeam, A.: A study on situational awareness security and privacy of wearable health monitoring devices. Int. J. Cyber Situational Aware. 1(1), 74–96 (2016)

    Article  Google Scholar 

  24. Els, F., Cilliers, L.: Improving the information security of personal electronic health records to protect a patient’s health information. In: 2017 Conference on Information Communication Technology and Society (ICTAS), pp. 1–6. IEEE (2017)

    Google Scholar 

  25. Tsoukas, V., Gkogkidis, A., Kakarountas, A.: A survey on mobile user perceptions of sensitive data and authentication methods. In: 24th Pan-Hellenic Conference on Informatics, pp. 346–349 (2020)

    Google Scholar 

  26. Cilliers, L., Viljoen, K.L.A., Chinyamurindi, W.T.: A study on students’ acceptance of mobile phone use to seek health information in South Africa. Health Inf. Manag. J. 47(2), 59–69 (2018)

    Google Scholar 

  27. Wiercioch, A., Teufel, S., Teufel, B.: The authentication dilemma. J. Commun. 13(8), 443–449 (2018)

    Article  Google Scholar 

  28. Cherapau, I., Muslukhov, I., Asanka, N., Beznosov, K.: On the impact of touch id on iphone passcodes. In: Eleventh Symposium on Usable Privacy and Security (SOUPS 2015), pp. 257–276 (2015)

    Google Scholar 

  29. Sharing of wearable health device data U.S. 2018. (n.d.). Statista. https://www.statista.com/statistics/829472/wearable-health-data-sharing-willingness-us-adults/. Accessed 22 Oct 2021

  30. Siboni, S., Shabtai, A., Tippenhauer, N.O., Lee, J., Elovici, Y.: Advanced security testbed framework for wearable IoT devices. ACM Trans. Internet Technol. (TOIT) 16(4), 1–25 (2016)

    Article  Google Scholar 

  31. Shah, K.T.: Privacy and Security Issues of Wearables in Healthcare (Doctoral dissertation, Flinders University, College of Science and Engineering.) (2019)

    Google Scholar 

  32. Piwek, L., Ellis, D.A., Andrews, S., Joinson, A.: The rise of consumer health wearables: promises and barriers. PLoS Med. 13(2), e1001953 (2016)

    Article  Google Scholar 

  33. 61 M Fitbit, Apple Users Had Data Exposed in Wearable Device Data Breach. Healthitsecurity. https://healthitsecurity.com/news/61m-fitbit-apple-users-had-data-exposed-in-wearable-device-data-breach. Accessed 22 Oct 2021

  34. Schlöglhofer, R., Sametinger, J.: Secure and usable authentication on mobile devices. In: Proceedings of the 10th International Conference on Advances in Mobile Computing & Multimedia, pp. 257–262 (2014)

    Google Scholar 

  35. Clarke, N.: Transparent User Authentication: Biometrics. Springer Science & Business Media, RFID and behavioural profiling (2011)

    Book  Google Scholar 

  36. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based protocol secure against dictionary attacks and password file compromise. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 244–250 (1993)

    Google Scholar 

  37. Conrad, E., Misenar, S., Feldman, J.: Eleventh Hour CISSP®: Study Guide. Syngress (2016)

    Google Scholar 

  38. Bada, M., von Solms, B.: A Cybersecurity Guide for Using Fitness Devices (2021). arXiv preprint http://arxiv.org/abs/2105.02933

  39. Garmin: the latest wearable attacked by ransomware and a controversial ransom. Panda Security Mediacenter (2020). https://www.pandasecurity.com/en/mediacenter/adaptive-defense/garmin-ransomware-attack/. Accessed 22 Oct 2021

  40. What is a denial of service attack (Dos)? (n.d.). Palo Alto Networks. https://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-service-attack-dos. Accessed 23 Oct 2021

  41. Arış, A., Oktuğ, S.F., Yalçın, S.B.Ö.: Internet-of-things security: denial of service attacks. In: 2015 23nd Signal Processing and Communications Applications Conference (SIU), pp. 903–906. IEEE (2015)

    Google Scholar 

  42. Ching, K.W., Singh, M.M.: Wearable technology devices security and privacy vulnerability analysis. Int. J. Netw. Secur. Appl. 8(3), 19–30 (2016)

    Google Scholar 

  43. Hale, M.L., Lotfy, K., Gamble, R.F., Walter, C., Lin, J.: Developing a platform to evaluate and assess the security of wearable devices. Digit. Commun. Netw. 5(3), 147–159 (2019)

    Article  Google Scholar 

  44. Forensic analysis and security. Security Today. https://securitytoday.com/articles/2018/05/01/forensic-analysis-and-security.aspx. Accessed 23 Oct 2021

  45. Secure Wi-Fi For Healthcare Applications. Aruba Network (n.d.). https://www.arubanetworks.com/assets/wp/WP_Healthcare_WLAN.pdf. Accessed 23 Oct 2021

  46. Rai, S., Chukwuma, P., Cozart, R.: Security and Auditing of Smart Devices: Managing Proliferation of Confidential Data on Corporate and BYOD Devices. Auerbach Publications, Boca Raton (2016)

    Book  Google Scholar 

  47. Melamed, T.: An active man-in-the-middle attack on bluetooth smart devices. Safety and Security Studies, vol 15 (2018)

    Google Scholar 

  48. Bluetooth bug opens devices to man-in-the-middle attacks. https://threatpost.com/bluetooth-bug-mitm-attacks/159124/. Accessed 23 Oct 2021

  49. Hajian, R., ZakeriKia, S., Erfani, S.H., Mirabi, M.: SHAPARAK: scalable healthcare authentication protocol with attack-resilience and anonymous key-agreement. Comput. Netw. 183, 107567 (2020)

    Article  Google Scholar 

  50. Zhang, C., Shahriar, H., Riad, A.K.: Security and privacy analysis of wearable health device. In: 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 1767–1772. IEEE (2020)

    Google Scholar 

  51. Chen, K., et al.: Internet-of-things security and vulnerabilities: taxonomy, challenges, and practice. J. Hardware Syst. Secur. 2(2), 97–110 (2018). https://doi.org/10.1007/s41635-017-0029-7

    Article  Google Scholar 

  52. Meingast, M., Roosta, T., Sastry, S.: Security and privacy issues with health care information technology. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5453–5458. IEEE (2006)

    Google Scholar 

  53. Safavi, S., Shukur, Z.: Conceptual privacy framework for health information on wearable device. PLoS One 9(12), e114306 (2014)

    Article  Google Scholar 

  54. Wang, S., Bie, R., Zhao, F., Zhang, N., Cheng, X., Choi, H.A.: Security in wearable communications. IEEE Netw. 30(5), 61–67 (2016)

    Article  Google Scholar 

  55. Bellekens, X., Hamilton, A., Seeam, P., Nieradzinska, K., Franssen, Q., Seeam, A.: Pervasive eHealth services a security and privacy risk awareness survey. In: 2016 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (CyberSA), pp. 1–4. IEEE (2016)

    Google Scholar 

  56. Anaya, L.S., Alsadoon, A., Costadopoulos, N., Prasad, P.W.C.: Ethical implications of user perceptions of wearable devices. Sci. Eng. Ethics 24(1), 1–28 (2018). https://doi.org/10.1007/s11948-017-9872-8

    Article  Google Scholar 

  57. Alrababah, Z.: Privacy and Security of Wearable Devices (2020)

    Google Scholar 

  58. Liu, J.C., Goetz, J., Sen, S., Tewari, A.: Learning from others without sacrificing privacy: simulation comparing centralized and federated machine learning on mobile health data. JMIR Mhealth Uhealth 9(3), e23728 (2021)

    Article  Google Scholar 

  59. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)

    Article  Google Scholar 

  60. Huang, L., Shea, A.L., Qian, H., Masurkar, A., Deng, H., Liu, D.: Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J. Biomed. Inf. 99, 103291 (2019)

    Article  Google Scholar 

  61. Lee, J., Sun, J., Wang, F., Wang, S., Jun, C.H., Jiang, X.: Privacy-preserving patient similarity learning in a federated environment: development and analysis. JMIR Med. Inf. 6(2), e7744 (2018)

    Google Scholar 

  62. Brisimi, T.S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I.C., Shi, W.: Federated learning of predictive models from federated electronic health records. Int. J. Med. Inf. 112, 59–67 (2018)

    Article  Google Scholar 

  63. Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9

    Chapter  Google Scholar 

  64. Farhad, A., Woolley, S., Andras, P.: Federated learning for AI to improve patient care using wearable and IoMT sensors. In: 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI), pp. 434–434. IEEE (2021)

    Google Scholar 

  65. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

    Chapter  Google Scholar 

  66. Fang, L., et al.: Bayesian inference federated learning for heart rate prediction. In: Ye, J., O’Grady, M.J., Civitarese, G., Yordanova, K. (eds.) MobiHealth 2020. LNICST, vol. 362, pp. 116–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70569-5_8

    Chapter  Google Scholar 

  67. Xiao, Z., Xu, X., Xing, H., Song, F., Wang, X., Zhao, B.: A federated learning system with enhanced feature extraction for human activity recognition. Knowl. Based Syst. 229, 107338 (2021)

    Article  Google Scholar 

  68. Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F.: Federated learning for healthcare informatics. J. Healthc. Inf. Res. 5(1), 1–19 (2021). https://doi.org/10.1007/s41666-020-00082-4

    Article  Google Scholar 

  69. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  70. Hao, M., et al.: Efficient and privacy-enhanced federated learning for industrial artificial intelligence. IEEE Trans. Industr. Inf. 16(10), 6532–6542 (2019)

    Article  Google Scholar 

  71. He, X., Su, X., Chen, Y., Hui, P.: Federated learning on wearable devices: demo abstract. In: Proceedings of the 18th Conference on Embedded Networked Sensor Systems, pp. 613–614 (2020)

    Google Scholar 

  72. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  73. McMahan, B., Moore, E., Ramage, D., Hampson, S., yArcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  74. Chen, Y., Qin, X., Wang, J., Yu, C., Gao, W.: Fedhealth: a federated transfer learning framework for wearable healthcare. IEEE Intell. Syst. 35(4), 83–93 (2020)

    Article  Google Scholar 

  75. Hakak, S., Ray, S., Khan, W.Z., Scheme, E.: A framework for edge-assisted healthcare data analytics using federated learning. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 3423–3427. IEEE (2020)

    Google Scholar 

  76. Yi, X., Paulet, R., Bertino, E.: Homomorphic encryption. In: Homomorphic Encryption and Applications. SCS, pp. 27–46. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12229-8_2

    Chapter  MATH  Google Scholar 

  77. El Makkaoui, K., Beni-Hssane, A., Ezzati, A.: Cloud-ElGamal and fast cloud-RSA homomorphic schemes for protecting data confidentiality in cloud computing. Int. J. Digit. Crime Forensics (IJDCF) 11(3), 90–102 (2019)

    Article  Google Scholar 

  78. Biksham, V., Vasumathi, D.: Homomorphic encryption techniques for securing data in cloud computing: a survey. Int. J. Comput. Appl. 975, 8887 (2017)

    Google Scholar 

  79. Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford university, California (2009)

    MATH  Google Scholar 

  80. Sathya, S.S., Vepakomma, P., Raskar, R., Ramachandra, R., Bhattacharya, S.: A review of homomorphic encryption libraries for secure computation (2018). arXiv preprint http://arxiv.org/abs/1812.02428

  81. Sun, X., Zhang, P., Sookhak, M., Yu, J., Xie, W.: Utilizing fully homomorphic encryption to implement secure medical computation in smart cities. Pers. Ubiquit. Comput. 21(5), 831–839 (2017). https://doi.org/10.1007/s00779-017-1056-7

    Article  Google Scholar 

  82. Farooqui, M., et al.: Improving mental healthcare using a human centered internet of things model and embedding homomorphic encryption scheme for cloud security. J. Comput. Theor. Nanosci. 16(5–6), 1806–1812 (2019)

    Article  Google Scholar 

  83. Wang, X., Zhang, Z.: Data division scheme based on homomorphic encryption in WSNs for health care. J. Med. Syst. 39(12), 1–7 (2015). https://doi.org/10.1007/s10916-015-0340-1

    Article  Google Scholar 

  84. Rohloff, K., Polyakov, Y.: An end-to-end security architecture to collect, process and share wearable medical device data. In: 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), pp. 615–620. IEEE (2015)

    Google Scholar 

  85. Salim, M.M., Kim, I., Doniyor, U., Lee, C., Park, J.H.: Homomorphic encryption based privacy-preservation for IoMT. Appl. Sci. 11(18), 8757 (2021)

    Article  Google Scholar 

  86. Prasitsupparote, A., Watanabe, Y., Shikata, J.: Implementation and analysis of fully homomorphic encryption in wearable devices. In: The Fourth International Conference on Information Security and Digital Forensics. The Society of Digital Information and Wireless Communications, pp. 1–14 (2018)

    Google Scholar 

  87. David, R., et al.: TensorFlow lite micro: embedded machine learning for TinyML systems. Proc. Mach. Learn. Syst. 3, 800–811 (2021)

    Google Scholar 

  88. Gorospe, J., Mulero, R., Arbelaitz, O., Muguerza, J., Antón, M.Á.: A generalization performance study using deep learning networks in embedded systems. Sensors 21(4), 1031 (2021)

    Article  Google Scholar 

  89. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks (2015). arXiv preprint http://arxiv.org/abs1506.02626

  90. Fyntanidou, B., et al.: IoT-based smart triage of Covid-19 suspicious cases in the Emergency Department. In: 2020 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2020)

    Google Scholar 

  91. Sanchez-Iborra, R.: LPWAN and embedded machine learning as enablers for the next generation of wearable devices. Sensors 21(15), 5218 (2021)

    Article  Google Scholar 

  92. Yamanoor, S., Yamanoor, N.S.: Position paper: low-cost solutions for home-based healthcare. In: 2021 International Conference on Communication Systems & NETworkS (COMSNETS), pp. 709–714. IEEE (2021)

    Google Scholar 

  93. Padhi, P.K., Charrua-Santos, F.: 6G enabled tactile internet and cognitive internet of healthcare everything: towards a theoretical framework. Appl. Syst. Innov. 4(3), 66 (2021)

    Article  Google Scholar 

  94. Papernot, N., McDaniel, P., Sinha, A., Wellman, M.P.: SoK: security and privacy in machine learning. IEEE Eur. Symp. Secur. Priv. (EuroS&P) 2018, 399–414 (2018). https://doi.org/10.1109/EuroSP.2018.00035

    Article  Google Scholar 

  95. Yeom, S., Giacomelli, I., Fredrikson, M., Jha, S.: Privacy risk in machine learning: analyzing the connection to overfitting. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pp. 268–282 (2018). https://doi.org/10.1109/CSF.2018.00027

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Boumpa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boumpa, E., Tsoukas, V., Gkogkidis, A., Spathoulas, G., Kakarountas, A. (2022). Security and Privacy Concerns for Healthcare Wearable Devices and Emerging Alternative Approaches. In: Gao, X., Jamalipour, A., Guo, L. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-031-06368-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06368-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06367-1

  • Online ISBN: 978-3-031-06368-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics