Skip to main content

PCWQ: A Framework for Evaluating Password Cracking Wordlist Quality

  • Conference paper
  • First Online:
Digital Forensics and Cyber Crime (ICDF2C 2021)

Abstract

The persistence of the single password as a method of authentication has driven both the efforts of system administrators to nudge users to choose stronger, safer passwords and elevated the sophistication of the password cracking methods chosen by their adversaries. In this constantly moving landscape, the use of wordlists to create smarter password cracking candidates begs the question of whether there is a way to assess which is better. In this paper, we present a novel modular framework to measure the quality of input wordlists according to several interconnecting metrics. Furthermore, we have conducted a preliminary analysis where we assess different input wordlists to showcase the framework’s evaluation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The salt is a random string (typically 3 to 5 random characters) that is concatenated to the password before hashing it. Identical passwords therefore have a different hash.

  2. 2.

    https://www.password-guessing.org/.

  3. 3.

    https://hashcat.net/.

  4. 4.

    https://www.openwall.com/john/.

  5. 5.

    https://www.hashcat.net.

  6. 6.

    https://github.com/hashcat/princeprocessor.

References

  1. Burr, W.E., Dodson, D.F., Polk, W.T.: NIST special publication 800–63 - electronic authentication guideline. Technical report, National Institute for Standards and Technology (2004)

    Google Scholar 

  2. Castelluccia, C., Dürmuth, M., Perito, D.: Adaptive password-strength meters from Markov models. In: NDSS (2012)

    Google Scholar 

  3. Du, X., et al.: SoK: exploring the state of the art and the future potential of artificial intelligence in digital forensic investigation. In: Proceedings of the 15th International Conference on Availability, Reliability and Security. Association of Computing Machinery (2020)

    Google Scholar 

  4. Dürmuth, M., Angelstorf, F., Castelluccia, C., Perito, D., Chaabane, A.: OMEN: faster password guessing using an ordered Markov enumerator. In: Piessens, F., Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol. 8978, pp. 119–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15618-7_10

    Chapter  Google Scholar 

  5. Galbally, J., Coisel, I., Sanchez, I.: A new multimodal approach for password strength estimation-part I: theory and algorithms. IEEE Trans. Inf. Forensics Secur. 12(12), 2829–2844 (2017)

    Article  Google Scholar 

  6. Haque, T., Wright, M., Scielzo, S.: Hierarchy of users’ web passwords: perceptions, practices and susceptibilities. Int. J. Hum Comput Stud. 72(12), 860–874 (2014)

    Article  Google Scholar 

  7. Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: PassGAN: a deep learning approach for password guessing. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 217–237. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_11

    Chapter  Google Scholar 

  8. Houshmand, S., Aggarwal, S.: Building better passwords using probabilistic techniques. In: Proceedings of the 28th Annual Computer Security Applications Conference, ACSAC 2012, pp. 109–118. Association for Computing Machinery, New York (2012)

    Google Scholar 

  9. Kanta, A., Coisel, I., Scanlon, M.: A survey exploring open source intelligence for smarter password cracking. Forensic Sci. Int. Digit. Investig. 35, 301075 (2020)

    Google Scholar 

  10. Kanta, A., Coisel, I., Scanlon, M.: Smarter password guessing techniques leveraging contextual information and OSINT. In: 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), pp. 1–2. IEEE (2020)

    Google Scholar 

  11. Kanta, A., Coray, S., Coisel, I., Scanlon, M.: How Viable is Password Cracking in Digital Forensic Investigation? Analyzing the Guessability of over 3.9 Billion Real-World Accounts. Forensic Science International: Digital Investigation, July 2021

    Google Scholar 

  12. Kuo, C., Romanosky, S., Cranor, L.F.: Human selection of mnemonic phrase-based passwords. In: Proceedings of the Second Symposium on Usable Privacy and Security, SOUPS 2006, pp. 67–78. Association for Computing Machinery, New York (2006)

    Google Scholar 

  13. Liu, Z., Hong, Y., Pi, D.: A large-scale study of web password habits of Chinese network users. JSW 9(2), 293–297 (2014)

    Google Scholar 

  14. Melicher, W., et al.: Fast, lean, and accurate: modeling password guessability using neural networks. In: Proceedings of the 25th USENIX Conference on Security Symposium, SEC 2016, pp. 175–191. USENIX Association, USA (2016)

    Google Scholar 

  15. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_36

  16. Shay, R., et al.: Designing password policies for strength and usability. ACM Trans. Inf. Syst. Secur. 18(4), 1–34 (2016)

    Article  Google Scholar 

  17. Ur, B., et al.: Design and evaluation of a data-driven password meter. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI 2017, pp. 3775–3786. Association for Computing Machinery, New York (2017)

    Google Scholar 

  18. Ur, B., et al.: “I added ‘!’ at the end to make it secure”: observing password creation in the lab. In: Eleventh Symposium on Usable Privacy and Security (SOUPS 2015), pp. 123–140 (2015)

    Google Scholar 

  19. von Zezschwitz, E., De Luca, A., Hussmann, H.: Survival of the shortest: a retrospective analysis of influencing factors on password composition. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8119, pp. 460–467. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40477-1_28

  20. Wang, D., He, D., Cheng, H., Wang, P.: FuzzyPSM: a new password strength meter using fuzzy probabilistic context-free grammars. In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 595–606 (2016)

    Google Scholar 

  21. Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE Trans. Inf. Forensics Secur. 12(11), 2776–2791 (2017)

    Article  Google Scholar 

  22. Wang, D., Wang, P., He, D., Tian, Y.: Birthday, name and bifacial-security: understanding passwords of Chinese web users. In: 28th USENIX Security Symposium (USENIX Security 2019), pp. 1537–1555. USENIX Association, Santa Clara, August 2019

    Google Scholar 

  23. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password guessing: an underestimated threat. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 1242–1254. Association for Computing Machinery, New York (2016)

    Google Scholar 

  24. Wash, R., Rader, E., Berman, R., Wellmer, Z.: Understanding password choices: how frequently entered passwords are re-used across websites. In: Twelfth Symposium on Usable Privacy and Security (SOUPS 2016), pp. 175–188. USENIX Association, Denver, June 2016

    Google Scholar 

  25. Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using probabilistic context-free grammars. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 391–405. IEEE (2009)

    Google Scholar 

  26. Wheeler, D.L.: zxcvbn: low-budget password strength estimation. In: 25th USENIX Security Symposium (USENIX Security 2016), pp. 157–173 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Scanlon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kanta, A., Coisel, I., Scanlon, M. (2022). PCWQ: A Framework for Evaluating Password Cracking Wordlist Quality. In: Gladyshev, P., Goel, S., James, J., Markowsky, G., Johnson, D. (eds) Digital Forensics and Cyber Crime. ICDF2C 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 441. Springer, Cham. https://doi.org/10.1007/978-3-031-06365-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06365-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06364-0

  • Online ISBN: 978-3-031-06365-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics