Skip to main content

Chromothripsis Rearrangements Are Informed by 3D-Genome Organization

  • Conference paper
  • First Online:
Book cover Comparative Genomics (RECOMB-CG 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13234))

Included in the following conference series:

  • 642 Accesses

Abstract

Chromothripsis is a mutational phenomenon representing a unique type of tremendously complex genomic structural alteration. It was initially described and was broadly observed in cancer with lower frequencies in other genetic disorders. Chromothripsis manifests massive genomic structural alterations during a single catastrophic event in the cell. It is considered to be characterized by the simultaneous shattering of chromosomes followed by random reassembly of the DNA fragments, ultimately resulting in newly formed, mosaic derivative chromosomes and with a potential for a drastic oncogenic transformation. Here, we consider a question of whether the genomic locations involved in chromothripsis rearrangements’ are randomly distributed in 3D genomic packing space or have some spatial organization’s predispositions. To that end, we investigated the structural variations (SVs) observed in previously sequenced cancer genomes via juxtaposition of involved breakpoints onto the Hi-C contact genome map of normal tissue. We found that the average Hi-C contact score for SVs breakpoints appearing at the same chromosome (cis-SVs) in an individual patient is significantly higher than the average Hi-C matrix signal, which indicates that SVs tend to involve spatially proximal regions of the chromosome. Furthermore, we overlaid the chromothripsis annotation of groups of SVs’ breakpoints and demonstrated that the Hi-C signals for both chromothripsis breakpoint regions as well as regular SVs breakpoints are statistically significantly higher than random control, suggesting that chromothripsis cis-SVs have the same tendency to rearrange the proximal sites in 3D-genome space. Last but not least, our analysis revealed a statistically higher Hi-C score for all pairwise combinations of breakpoints involved in chromothripsis event when compared to both background Hi-C signal as well as to combination of non-chromothripsis breakpoint pairs. This observation indicates that breakpoints could be assumed to describe a given chromothripsis 3D-cluster as a proximal bundle in genome space. These results provide valuable new insights into the spatial relationships of the SVs loci for both chromothripsis and regular genomic alterations, laying the foundation for the development of a more precise method for chromothripsis identification and annotation.

N. Petukhova and A. Zabelkin—These authors contributed equally. N. Alexeev—Independent researcher

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, H., Kumar, N., Bagheri, H.C., von Mering, C., Robinson, M.D., Baudis, M.: Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22, 347 cancer genome screens. BMC Genom. 15(1), 1–3 (2014). https://doi.org/10.1186/1471-2164-15-82

    Article  Google Scholar 

  2. Canela, A., et al.: Genome organization drives chromosome fragility. Cell 170(3), 507-521.e18 (2017). https://doi.org/10.1016/j.cell.2017.06.034

    Article  Google Scholar 

  3. Cleal, K., Jones, R.E., Grimstead, J.W., Hendrickson, E.A., Baird, D.M.: Chromothripsis during telomere crisis is independent of NHEJ, and consistent with a replicative origin. Genome Res. 29(5), 737–749 (2019). https://doi.org/10.1101/gr.240705.118

    Article  Google Scholar 

  4. Cortés-Ciriano, I., et al.: Comprehensive analysis of chromothripsis in 2, 658 human cancers using whole-genome sequencing. Nat. Genet. 52(3), 331–341 (2020). https://doi.org/10.1038/s41588-019-0576-7

    Article  Google Scholar 

  5. Engreitz, J.M., Agarwala, V., Mirny, L.A.: Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease. PLoS ONE 7(9), e44196 (2012). https://doi.org/10.1371/journal.pone.0044196

  6. Govind, S.K., et al.: ShatterProof: operational detection and quantification of chromothripsis. BMC Bioinform. 15(1), 1–3 (2014). https://doi.org/10.1186/1471-2105-15-78

  7. Kloosterman, W.P., Koster, J., Molenaar, J.J.: Prevalence and clinical implications of chromothripsis in cancer genomes. Current Opinion Oncol. 26(1), 64–72 (2014)

    Google Scholar 

  8. Korbel, J.O., Campbell, P.J.: Criteria for inference of chromothripsis in cancer genomes. Cell 152(6), 1226–1236 (2013). https://doi.org/10.1016/j.cell.2013.02.023

    Article  Google Scholar 

  9. Lieber, M.R.: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Ann. Rev. Biochem. 79(1), 181–211 (2010). https://doi.org/10.1146/annurev.biochem.052308.093131

    Article  Google Scholar 

  10. Lieberman-Aiden, E., et al.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950), 289–293 (2009). https://doi.org/10.1126/science.1181369

    Article  Google Scholar 

  11. Luijten, M.N.H., Lee, J.X.T., Crasta, K.C.: Mutational game changer: chromothripsis and its emerging relevance to cancer. Mutat. Res. Rev. Mutat. Res. 777, 29–51 (2018). https://doi.org/10.1016/j.mrrev.2018.06.004

    Article  Google Scholar 

  12. Lukas, J., Lukas, C., Bartek, J.: More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat. Cell Biol. 13(10), 1161–1169 (2011). https://doi.org/10.1038/ncb2344

    Article  Google Scholar 

  13. Marcozzi, A., Pellestor, F., Kloosterman, W.P.: The genomic characteristics and origin of chromothripsis. In: Pellestor, F. (ed.) Chromothripsis. MMB, vol. 1769, pp. 3–19. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7780-2_1

    Chapter  Google Scholar 

  14. McVey, M., Lee, S.E.: MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 24(11), 529–538 (2008). https://doi.org/10.1016/j.tig.2008.08.007

    Article  Google Scholar 

  15. Morishita, M., et al.: Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget 7(9), 10182–10192 (2016). https://doi.org/10.18632/oncotarget.7186

  16. Rhie, S.K., et al.: A high-resolution 3d epigenomic map reveals insights into the creation of the prostate cancer transcriptome. Nat. Commun. 10(1), 1–2 (2019). https://doi.org/10.1038/s41467-019-12079-8

    Article  Google Scholar 

  17. Rode, A., Maass, K.K., Willmund, K.V., Lichter, P., Ernst, A.: Chromothripsis in cancer cells: an update. Int. J. Cancer 138(10), 2322–2333 (2015). https://doi.org/10.1002/ijc.29888

    Article  Google Scholar 

  18. Roukos, V., Misteli, T.: The biogenesis of chromosome translocations. Nat. Cell Biol. 16(4), 293–300 (2014). https://doi.org/10.1038/ncb2941

    Article  Google Scholar 

  19. Rowley, M.J., Corces, V.G.: Organizational principles of 3d genome architecture. Nat. Rev. Genet. 19(12), 789–800 (2018). https://doi.org/10.1038/s41576-018-0060-8

    Article  Google Scholar 

  20. Shoshani, O., et al.: Chromothripsis drives the evolution of gene amplification in cancer. Nature 591(7848), 137–141 (2020). https://doi.org/10.1038/s41586-020-03064-z

    Article  Google Scholar 

  21. Sidiropoulos, N., et al.: Somatic structural variant formation is guided by and influences genome architecture (2021). https://doi.org/10.1101/2021.05.18.444682

  22. Simonaitis, P., Swenson, K.M.: Finding local genome rearrangements. Algorithms Mol. Biol. 13(1), 1–14 (2018)

    Article  Google Scholar 

  23. Sishc, B., Davis, A.: The role of the core non-homologous end joining factors in carcinogenesis and cancer. Cancers 9(7), 81 (2017). https://doi.org/10.3390/cancers9070081

    Article  Google Scholar 

  24. Stephens, P.J., et al.: Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1), 27–40 (2011). https://doi.org/10.1016/j.cell.2010.11.055

    Article  MathSciNet  Google Scholar 

  25. Stevens, J.B., et al.: Diverse system stresses: common mechanisms of chromosome fragmentation. Cell Death Disease 2(6), e178–e178 (2011). https://doi.org/10.1038/cddis.2011.60

    Article  Google Scholar 

  26. Stratton, M.R., Campbell, P.J., Futreal, P.A.: The cancer genome. Nature 458(7239), 719–724 (2009). https://doi.org/10.1038/nature07943

    Article  Google Scholar 

  27. Swenson, K.M., Blanchette, M.: Large-scale mammalian genome rearrangements coincide with chromatin interactions. Bioinformatics 35(14), i117–i126 (2019)

    Article  Google Scholar 

  28. Szalaj, P., Plewczynski, D.: Three-dimensional organization and dynamics of the genome. Cell Biol. Toxicol. 34(5), 381–404 (2018). https://doi.org/10.1007/s10565-018-9428-y

    Article  Google Scholar 

  29. Véron, A.S., Lemaitre, C., Gautier, C., Lacroix, V., Sagot, M.F.: Close 3d proximity of evolutionary breakpoints argues for the notion of spatial synteny. BMC Genom. 12(1), 1–13 (2011)

    Article  Google Scholar 

  30. Voronina, N., et al.: The landscape of chromothripsis across adult cancer types. Nat. Commun. 11(1), 1–3 (2020). https://doi.org/10.1038/s41467-020-16134-7

  31. Weinreb, C., Oesper, L., Raphael, B.J.: Open adjacencies and k-breaks: detecting simultaneous rearrangements in cancer genomes. BMC Genom. 15(6), 1–11 (2014)

    Google Scholar 

  32. Zhang, Y.: The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. In: Advances in Immunology, pp. 93–133. Elsevier (2010). https://doi.org/10.1016/s0065-2776(10)06004-9

  33. Zhang, Y., McCord, R.P., Ho, Y.J., Lajoie, B.R., Hildebrand, D.G., Simon, A.C., Becker, M.S., Alt, F.W., Dekker, J.: Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148(5), 908–921 (2012). https://doi.org/10.1016/j.cell.2012.02.002

    Article  Google Scholar 

  34. Zhao, B., Watanabe, G., Morten, M.J., Reid, D.A., Rothenberg, E., Lieber, M.R.: The essential elements for the noncovalent association of two DNA ends during NHEJ synapsis. Nat. Commun. 10(1), 1–2 (2019). https://doi.org/10.1038/s41467-019-11507-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Zabelkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petukhova, N., Zabelkin, A., Dravgelis, V., Aganezov, S., Alexeev, N. (2022). Chromothripsis Rearrangements Are Informed by 3D-Genome Organization. In: Jin, L., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2022. Lecture Notes in Computer Science(), vol 13234. Springer, Cham. https://doi.org/10.1007/978-3-031-06220-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06220-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06219-3

  • Online ISBN: 978-3-031-06220-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics