Skip to main content

Modelling Zeros in Blockmodelling

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2022)

Abstract

Blockmodelling is the process of determining community structure in a graph. Real graphs contain noise and so it is up to the blockmodelling method to allow for this noise and reconstruct the most likely role memberships and role relationships. Relationships are encoded in a graph using the absence and presence of edges. Two objects are considered similar if they each have edges to a third object. However, the information provided by missing edges is ambiguous and therefore can be measured in different ways. In this article, we examine the effect of the choice of block metric on blockmodelling accuracy and find that data relationships can be position based or set based. We hypothesise that this is due to the data containing either Hamming noise or Jaccard noise. Experiments performed on simulated data show that when no noise is present, the accuracy is independent of the choice of metric. But when noise is introduced, high accuracy results are obtained when the choice of metric matches the type of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www-personal.umich.edu/~mejn/ vlado.fmf.uni-lj.si/pub/networks/pajek/.

References

  1. Chan, J., Liu, W., Kan, A., Leckie, C., Bailey, J., Kotagiri, R.: Discovering latent blockmodels in sparse and noisy graphs using non-negative matrix factorisation. In: CIKM, pp. 811–816. ACM (2013)

    Google Scholar 

  2. Fiala, J., Paulusma, D.: The computational complexity of the role assignment problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 817–828. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_64

    Chapter  Google Scholar 

  3. Hahsler, M.: An experimental comparison of seriation methods for one-mode two-way data. Eur. J. Oper. Res. 257(1), 133–143 (2017)

    Article  MathSciNet  Google Scholar 

  4. Hurley, C.B.: Clustering visualizations of multidimensional data. J. Comput. Graph. Stat. 13(4), 788–806 (2004)

    Article  MathSciNet  Google Scholar 

  5. Karrer, B., Newman, M.E.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016107 (2011)

    Article  MathSciNet  Google Scholar 

  6. Park, L.A.F., Bezdek, J.C., Leckie, C., Kotagiri, R., Bailey, J., Palaniswami, M.: Visual assessment of clustering tendency for incomplete data. IEEE TKDE 28(12), 3409–3422 (2016)

    Google Scholar 

  7. Park, L.A.F., Read, J.: A blended metric for multi-label optimisation and evaluation. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 719–734. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_44

    Chapter  Google Scholar 

  8. Reichardt, J., White, D.R.: Role models for complex networks. The Eur. Phys. J. B 60(2), 217–224 (2007)

    Article  Google Scholar 

  9. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  10. Zhang, Y., Yeung, D.Y.: Overlapping community detection via bounded nonnegative matrix tri-factorization. In: Proceedings of the 18th ACM SIGKDD, pp. 606–614. ACM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence A. F. Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, L.A.F. et al. (2022). Modelling Zeros in Blockmodelling. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. Lecture Notes in Computer Science(), vol 13281. Springer, Cham. https://doi.org/10.1007/978-3-031-05936-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05936-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05935-3

  • Online ISBN: 978-3-031-05936-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics