Skip to main content

A Method to Assess the Fragility of a Terraced System as an Example of Landscape Agronomic Analysis

  • Chapter
  • First Online:
Landscape Agronomy

Abstract

In this chapter, we develop a spatially explicit method to assess the fragility of a terraced system. The fragility concept combines into a single term analysis of degradation risk or vulnerability and the localised need for and prioritisation of land-management actions. We applied it to a terraced system as an example of agricultural landscapes characterised by intense anthropic reshaping that require continuous management to preserve functional stability. The aim was to zone the terraced system according to its fragility, assessed as the distance of terrace elements and their network from expected functional performances. The method was a GIS-based multi-attribute decision analysis, which was applied to Monte Pisano (Tuscany, Italy), illustrative of Mediterranean terraced systems. The decision-making problem was to identify priority zones for management (i.e. the most fragile) to ensure functional stability of the overall system. It was addressed in five steps: selecting and processing a set of attributes, combing them to define homogeneous management zones, then classifying and testing the reliability of the results using metrics based on a confusion matrix. Each step was co-conceived with the active participation of local decision-makers to enhance their understanding of the terraced system and ensure that they understood the analytical process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeldayem S, Hoevenaars J, Mollinga PP et al (2005) Agricultural drainage: towards an integrated approach. Irrig Drain Syst 19:71–87. https://doi.org/10.1007/s10795-005-2974-5

    Article  Google Scholar 

  • Agnoletti M, Conti L, Frezza L, Santoro A (2015) Territorial analysis of the agricultural terraced landscapes of Tuscany (Italy): preliminary results. Sustainability 7:4564–4581. https://doi.org/10.3390/su7044564

    Article  Google Scholar 

  • Allen HD, Randall RE, Amable GS, Devereux BJ (2006) The impact of changing olive cultivation practices on the ground flora of olive groves in the Messara and Psiloritis regions, Crete, Greece. Land Degrad Dev 17:249–273. https://doi.org/10.1002/ldr.716

    Article  Google Scholar 

  • Andlar G, Šrajer F, Trojanović A (2017) Classifying the Mediterranean terraced landscape: the case of Adriatic Croatia. Acta Geogr Slov 57:111–129. https://doi.org/10.3986/AGS.4673

    Article  Google Scholar 

  • Antrop M (1993) The transformation of the Mediterranean landscapes: an experience of 25 years of observations. Landsc Urban Plan 24:3–13. https://doi.org/10.1016/0169-2046(93)90076-P

    Article  Google Scholar 

  • Antrop M (2005) Why landscapes of the past are important for the future. Landsc Urban Plan 70:21–34. https://doi.org/10.1016/j.landurbplan.2003.10.002

    Article  Google Scholar 

  • Asins Velis S (2007) Los aterrazamientos mediterráneos. Paradigma ambiental-agro-cultural. Cuadernos de sostenibilidad y patrimonio natural 81–91

    Google Scholar 

  • Baldeschi P (ed) (2000) Il Chianti fiorentino: un progetto per la tutela del paesaggio. Laterza, Bari (ITA)

    Google Scholar 

  • Baldeschi P (2005) Il paesaggio agrario del Montalbano: identità, sostenibilità, società locale. Passigli, Firenze (ITA)

    Google Scholar 

  • Barreteau O, Bousquet F, Étienne M et al (2014) Companion modelling: a method of adaptive and participatory research. In: Étienne M (ed) Companion modelling: a participatory approach to support sustainable development. Springer, Netherlands, Dordrecht, pp 13–40

    Chapter  Google Scholar 

  • Basso M (1975) L’agricoltura dei Monti Pisani. In: Per una valorizzazione dei Monti Pisani. Pacini Editore, Pisa (ITA), pp 31–41

    Google Scholar 

  • Bazzoffi P (2007) Erosione del suolo e sviluppo rurale sostenibile. Fondamenti e manualistica per la valutazione agroambientale. Edagricole-New Business Media, Bologna

    Google Scholar 

  • Benoît M, Rizzo D, Marraccini E et al (2012) Landscape agronomy: a new field for addressing agricultural landscape dynamics. Landsc Ecol 27:1385–1394. https://doi.org/10.1007/s10980-012-9802-8

    Article  Google Scholar 

  • Bertacchi A, Sani A (2008) Il paesaggio vegetale dei terrazzamenti del Monte Pisano. In: Galli M, Rizzo D, Casella (eds) Il paesaggio terrazzato del Monte Pisano tra permanenza e mutamenti. ETS, Pisa (Italy), pp 11–17

    Google Scholar 

  • Beuret JE (2002) À qui appartient le paysage? Nature Sciences Sociétés 10:47–53

    Article  Google Scholar 

  • Bevan A, Conolly J (2011) Terraced fields and Mediterranean landscape structure: an analytical case study from Antikythera, Greece. Ecol Model 222:1303–1314. https://doi.org/10.1016/j.ecolmodel.2010.12.016

    Article  Google Scholar 

  • Bonardi L, Varotto M (2016) Paesaggi terrazzati d’Italia: Eredità storiche e nuove prospettive. Franco Angeli Edizioni

    Google Scholar 

  • Bonari E, Silvestri N (1993) La stima dei “rischi di erosione” in Provincia di Pisa. In: Coltivazioni erbacee e rischi ambientali in Provincia di Pisa, Centro Studi Economico-Finanziari, Centro Studi Economico-Finanziari, Pisa (ITA), pp 115–168

    Google Scholar 

  • Bosshard A (1997) What does objectivity mean for analysis, valuation and implementation in agricultural landscape planning? A practical and epistemological approach to the search for sustainability in [`]Agri-culture. Agric Ecosyst Environ 63:133–143. https://doi.org/10.1016/S0167-8809(97)00015-7

    Article  Google Scholar 

  • Brancucci G, Ghersi A, Ruggiero ME (2000) Paesaggi liguri a terrazze: riflessioni per una metodologia di studio. Alinea, Firenze

    Google Scholar 

  • Brancucci G, Paliaga G (2006) The hazard assessment in a terraced landscape: preliminary result of the Liguria (Italy) case study in the Interreg III ALPTER project. In: Nadim F, Pöttler R, Einstein H et al (eds) Lillehammer, Norway, p paper 16

    Google Scholar 

  • Bürgi M, Hersperger AM, Schneeberger N (2004) Driving forces of landscape change—current and new directions. Landsc Ecol 19:857–868. https://doi.org/10.1007/s10980-005-0245-3

    Article  Google Scholar 

  • Cammeraat ELH (2004) Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in Southeast Spain. Agric Ecosyst Environ 104:317–332. https://doi.org/10.1016/j.agee.2004.01.032

    Article  Google Scholar 

  • Carluer N, Marsily GD (2004) Assessment and modelling of the influence of man-made networks on the hydrology of a small watershed: implications for fast flow components, water quality and landscape management. J Hydrol 285:76–95. https://doi.org/10.1016/j.jhydrol.2003.08.008

    Article  CAS  Google Scholar 

  • Caruso G (1883) Dell’olivo: monografia. Unione Tipografico-Editrice, Torino (ITA)

    Google Scholar 

  • Chakhar S, Martel JM (2003) Enhancing geographical information systems capabilities with multi-criteria evaluation functions. J Geogr Inf Decis Anal 7:47–71

    Google Scholar 

  • Chung C-JF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b

    Article  Google Scholar 

  • Clarke ML, Rendell HM (2000) The impact of the farming practice of remodelling hillslope topography on badland morphology and soil erosion processes. Catena 40:229–250. https://doi.org/10.1016/S0341-8162(99)00047-8

    Article  Google Scholar 

  • COE (2000) European landscape convention

    Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46. https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  • Cohen M, Varga D, Vila J, Barrassaud E (2011) A multi-scale and multi-disciplinary approach to monitor landscape dynamics: a case study in the Catalan pre-Pyrenees (Spain). Geogr J 177:79–91. https://doi.org/10.1111/j.1475-4959.2010.00368.x

    Article  Google Scholar 

  • Cohen Y, Shoshany M (2002) A national knowledge-based crop recognition in Mediterranean environment. Int J Appl Earth Obs Geoinf 4:75–87. https://doi.org/10.1016/S0303-2434(02)00003-X

    Article  Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. https://doi.org/10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  • Congalton RG, Oderwald RG, Mead RA (1983) Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. Photogramm Eng Remote Sens 49:1671–1678

    Google Scholar 

  • Cullotta S, Barbera G (2011) Mapping traditional cultural landscapes in the Mediterranean area using a combined multidisciplinary approach: method and application to Mount Etna (Sicily; Italy). Landsc Urban Plan 100:98–108. https://doi.org/10.1016/j.landurbplan.2010.11.012

    Article  Google Scholar 

  • Deffontaines J, Thenail C, Baudry J (1995) Agricultural systems and landscape patterns: how can we build a relationship? Landsc Urban Plan 31:3–10. https://doi.org/10.1016/0169-2046(94)01031-3

    Article  Google Scholar 

  • Deffontaines JP (2006) Analyse du paysage. In: Acteurs et territoires locaux: Vers une géoagronomie de l’aménagement. Editions Quae, pp 69–88

    Google Scholar 

  • Deffontaines J-P (2004) L’objet dans l’espace agricole. Le regard d’un géoagronome. Natures Sciences Sociétés 12:299–304. https://doi.org/10.1051/nss:2004041

    Article  Google Scholar 

  • Di Fazio S, Malaspina D, Modica G (2005) La gestione territoriale dei paesaggi agrari terrazzati tra conservazione e sviluppo. In: L’ingegneria agraria per lo sviluppo sostenibile dell’area mediterranea. AIIA, Catania (ITA), pp 27–30

    Google Scholar 

  • Dorren L, Rey F (2004) A review of the effect of terracing on erosion. In: Briefing Papers. Soil Conservation and Protection for Europe (SCAPE) project, Cinque Terre (ITA), pp 97–108

    Google Scholar 

  • Dunjó G, Pardini G, Gispert M (2003) Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain. Catena 52:23–37. https://doi.org/10.1016/S0341-8162(02)00148-0

    Article  Google Scholar 

  • Emsellem K, Liziard S, Scarella F (2012) Geoprospective: an emerging field of research? L’Espace géographique 41:154–168

    Article  Google Scholar 

  • Ercoli A, Montini G, Sulli L (2005) Guida pratica per l’individuazione, la classificazione, la rappresentazione e la gestione degli elementi geomorfologici applicati alla pianificazione territoriale. Autorità di Bacino del fiume Arno—Ordine dei Geologi della Toscana, Firenze (ITA)

    Google Scholar 

  • Evans TP, Winterhalder B (2000) Modified solar insolation as an agronomic factor in terraced environments. Land Degrad Dev 11:273–287. https://doi.org/10.1002/1099-145X(200005/06)11:3<273::AID-LDR384>3.0.CO;2-J

    Article  Google Scholar 

  • Ferrarese F, Pappalardo SE, Cosner A et al (2019) Mapping agricultural terraces in Italy. Methodologies applied in the MAPTER project. In: Varotto M, Bonardi L, Tarolli P (eds) World terraced landscapes: history, environment, quality of life. Springer International Publishing, Cham, pp 179–194

    Chapter  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80:185–201. https://doi.org/10.1016/S0034-4257(01)00295-4

    Article  Google Scholar 

  • Galli M (2003) Il rapporto tra gestione tecnica e ambiente socio-istituzionale nella definizione delle pratiche agroambientali. PhD Thesis, Scuola Superiore Sant’Anna

    Google Scholar 

  • Galli M, Petri M, Pieroni P, Bonari E (2002) Elementi di diagnosi del comprensorio rurale del Monte Pisano. Scuola Superiore Sant’Anna, Pisa (ITA)

    Google Scholar 

  • Galli M, Rizzo D, Bonari E (2006) The landscape functionalities of agricultural activities: the case study of Lunigiana. Agribusiness Landscape Environ Manage 9:67–74

    Google Scholar 

  • Galli M, Rizzo D, Bonari E (2008) Il ruolo contemporaneo dell’agricoltura nella costruzione dei paesaggi in Toscana. In: Pazzagli R (ed) Il paesaggio della Toscana tra storia e tutela. ETS, Pisa (ITA), pp 123–145

    Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2003) The climate near the ground. Rowman & Littlefield

    Google Scholar 

  • Geneletti D (2004) A GIS-based decision support system to identify nature conservation priorities in an alpine valley. Land Use Policy 21:149–160. https://doi.org/10.1016/j.landusepol.2003.09.005

    Article  Google Scholar 

  • Gennai-Schott S, Sabbatini T, Rizzo D, Marraccini E (2020) Who remains when professional farmers give up? Some insights on hobby farming in an olive groves-oriented terraced Mediterranean area. Land 9:168. https://doi.org/10.3390/land9050168

    Article  Google Scholar 

  • Giordani C, Zanchi C (1995) Elementi di conservazione del suolo. Pàtron

    Google Scholar 

  • Girardin P, Weinstoerffer J (2003) Assessment of the contribution of land use pattern and management of farming systems to landscape quality: a landscape indicator. In: NIJOS rapport. Oslo, pp 67–81

    Google Scholar 

  • Grove AT, Rackham O (2003) The nature of Mediterranean Europe: an ecological history. Yale University Press

    Google Scholar 

  • Guitouni A, Martel JM (1998) Tentative guidelines to help choosing an appropriate MCDA method. Eur J Oper Res 109:501–521. https://doi.org/10.1016/S0377-2217(98)00073-3

    Article  Google Scholar 

  • Hill MJ, Braaten R, Veitch SM et al (2005) Multi-criteria decision analysis in spatial decision support: the ASSESS analytic hierarchy process and the role of quantitative methods and spatially explicit analysis. Environ Model Softw 20:955–976. https://doi.org/10.1016/j.envsoft.2004.04.014

    Article  Google Scholar 

  • Houet T, Loveland TR, Hubert-Moy L et al (2010) Exploring subtle land use and land cover changes: a framework for future landscape studies. Landsc Ecol 25:249–266. https://doi.org/10.1007/s10980-009-9362-8

    Article  Google Scholar 

  • Inbar M, Llerena CA (2000) Erosion processes in high mountain agricultural terraces in Peru. Mt Res Dev 20:72–79. https://doi.org/10.1659/0276-4741(2000)020[0072:EPIHMA]2.0.CO;2

    Article  Google Scholar 

  • Irigaray C, Fernández T, Hamdouni RE, Chacón J (2007) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Nat Hazards 41:61–79. https://doi.org/10.1007/s11069-006-9027-8

    Article  Google Scholar 

  • Jackson LL (2008) Who “designs” the agricultural landscape? Landsc J 27:23–40. https://doi.org/10.3368/lj.27.1.23

    Article  Google Scholar 

  • Janssen R (2001) On the use of multi-criteria analysis in environmental impact assessment in The Netherlands. J Multicrit Decis Anal 10:101–109. https://doi.org/10.1002/mcda.293

    Article  Google Scholar 

  • Jenness J (2006) Repeating shapes for ArcGIS. Jenness Enterprises, Arizona, USA

    Google Scholar 

  • Jenness J, Wynne JJ (2007a) Kappa analysis (kappa_stats. avx) extension for ArcView 3. x

    Google Scholar 

  • Jenness J, Wynne JJ (2007b) Cohen’s Kappa and classification table metrics 2.1. An ArcView 3x Extension for Accuracy Assessment of Spatially-Explicit Models

    Google Scholar 

  • Jessel B (2006) Elements, characteristics and character—information functions of landscapes in terms of indicators. Ecol Indic 6:153–167. https://doi.org/10.1016/j.ecolind.2005.08.009

    Article  Google Scholar 

  • Joerin F, Thériault M, Musy A (2001) Using GIS and outranking multicriteria analysis for land-use suitability assessment. Int J Geogr Inf Sci 15:153–174. https://doi.org/10.1080/13658810051030487

    Article  Google Scholar 

  • King R, Cori B, Vallega A (2001) Unity, diversity and the challenge of sustainable development: an introduction to the Mediterranean. In: King R, de Mas P, Mansvelt Beck J (eds) Geography, environment and development in the Mediterranean. Sussex Academic Press, pp 1–17

    Google Scholar 

  • Koulouri M, Giourga C (2007) Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. Catena 69:274–281. https://doi.org/10.1016/j.catena.2006.07.001

    Article  Google Scholar 

  • Kulhavỳ Z, Doležal F, Soukup M, Havel M (2000) The identification, categorisation and hydrological evaluation of existing drainage systems on agricultural lands in the Orlice basin, East Bohemia. In: Environmental management of the rural landscape in Central Europe, Podbanské (Slovenia)

    Google Scholar 

  • Landi R (1984) Regimazione idraulico-agrarie e conservazione del suolo. Rivista di Agronomia 18:147–174

    Google Scholar 

  • Lardon S, Marraccini E, Filippini R et al (2016) Prospective participative pour la zone urbaine de Pise (Italie) : l’eau et l’alimentation comme enjeux de développement territorial. Cahiers de géographie du Québec 60:265. https://doi.org/10.7202/1040535ar

    Article  Google Scholar 

  • Lurz PWW, Rushton SP, Wauters LA et al (2001) Predicting grey squirrel expansion in North Italy: a spatially explicit modelling approach. Landsc Ecol 16:407–420. https://doi.org/10.1023/A:1017508711713

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multicriteria decision analysis. Wiley

    Google Scholar 

  • Malczewski J (2000) On the use of weighted linear combination method in GIS: common and best practice approaches. Trans GIS 4:5–22. https://doi.org/10.1111/1467-9671.00035

    Article  Google Scholar 

  • Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20:703–726. https://doi.org/10.1080/13658810600661508

    Article  Google Scholar 

  • Manoli C (2008) L’olivicoltura nei Colli Euganei: aspetti produttivi e qualitativi dell’olio di oliva. Master Thesis, Università di Padova

    Google Scholar 

  • Martinelli A (1995) La distribuzione della proprietà terriera, il paesaggio agrario, la popolazione nella comunità di Vicopisano nella prima metà dell’800. Annali dell’Istituto Alcide Cervi 17(18):45–73

    Google Scholar 

  • Martínez TL, Vadillo JA, Flaño PR, Monreal NL-R (2013) Los bancales en las montañas españolas: un paisaje abandonado y un recurso potencial. Boletín de la Asociación de Geógrafos Españoles:301–322

    Google Scholar 

  • Mathevet R, Antona M, Barnaud C et al (2014) Contexts and dependencies in the ComMod processes. In: Companion modelling: a participatory approach to support sustainable development. Springer, Netherlands, Dordrecht, pp 103–125

    Chapter  Google Scholar 

  • Méjean P, Vignon B, Benoît M (1996) Étude des critères d’appréciation des acteurs du paysage dans trois espaces agricoles lorrains. L’Espace géographique 25:245–256. https://doi.org/10.3406/spgeo.1996.992

    Article  Google Scholar 

  • Meyer BC, Grabaum R, Wolf T (2007) Localisation of linear landscape elements using multi-criteria optimisation. In: Bounce RGH, Jongman RHG, Hojas L, Weel S (eds) 25 years of landscape ecology: scientific principles in practice. IALE, pp 971–972

    Google Scholar 

  • Milton K (1996) Environmentalism and cultural theory exploring the role of anthropology in environmental discourse. Routledge, London, New York

    Google Scholar 

  • Mitchell N, Espie P, Hankin R (2004) Rational landscape decision-making: the use of meso-scale climatic analysis to promote sustainable land management. Landsc Urban Plan 67:131–140. https://doi.org/10.1016/S0169-2046(03)00034-3

    Article  Google Scholar 

  • Modica G, Praticò S, Di Fazio S (2017) Abandonment of traditional terraced landscape: a change detection approach (a case study in costa Viola, Calabria, Italy). Land Degrad Develop 28:2608–2622. https://doi.org/10.1002/ldr.2824

    Article  Google Scholar 

  • Murray AT, Shyy T-K (2000) Integrating attribute and space characteristics in choropleth display and spatial data mining. Int J Geogr Inf Sci 14:649–667. https://doi.org/10.1080/136588100424954

    Article  Google Scholar 

  • Nassauer JI, Opdam P (2008) Design in science: extending the landscape ecology paradigm. Landsc Ecol 23:633–644. https://doi.org/10.1007/s10980-008-9226-7

    Article  Google Scholar 

  • Nicolosi A, Cambareri D (2007) Il paesaggio terrazzato della Costa Viola. In: XXXVI Incontro di Studio Ce.S.E.T. Firenze University Press, Firenze (ITA), pp 179–194

    Google Scholar 

  • Nilsson C, Grelsson G (1995) The fragility of ecosystems: a review. J Appl Ecol 32:677–692. https://doi.org/10.2307/2404808

    Article  Google Scholar 

  • Noublanche C (1999) Evaluation économique du paysage: Quelles possibilités d’identification des composantes de la demande pour l’aide à la décision publique, à partir de l’exemple de la châtaigneraie cévenole. Thèse de doctorat d’agro-économie, Ecole Nationale Supérieure d’Agronomie de Montpellier, Montpellier

    Google Scholar 

  • Oliva A (1939) Le sistemazioni idraulico-agrarie dei terreni asciutti di pianura, collina e montagna. In: La sistemazione delle acque e dei terreni. Firenze, p 356

    Google Scholar 

  • Ore G, Bruins HJ (2012) Design features of ancient agricultural terrace walls in the Negev Desert: human-made geodiversity. Land Degrad Develop 23:409–418. https://doi.org/10.1002/ldr.2152

    Article  Google Scholar 

  • Pacini CG (2003) An environmental-economic framework to support multi-objective policymaking. A farming system approach implemented for Tuscany. PhD Thesis, Wageningen University

    Google Scholar 

  • Parvex F, Antonio Turiel S (2001) Sauvegarde des murs en pierres sèches et du vignoble en terrasses valaisan. Serec

    Google Scholar 

  • Phua M-H, Minowa M (2005) A GIS-based multi-criteria decision making approach to forest conservation planning at a landscape scale: a case study in the Kinabalu Area, Sabah, Malaysia. Landsc Urban Plan 71:207–222. https://doi.org/10.1016/j.landurbplan.2004.03.004

    Article  Google Scholar 

  • Pieroni P, Brunori G (2007) Il caso del Monte Pisano: il paesaggio nella campagna periurbana, tra sviluppo residenziale-turistico e nuove forme di agricoltura. In: La Gestione del Paesaggio Rurale tra Governo e Governance Territoriale. Continuità e innovazione. Franco Angeli, Milano (ITA), pp 164–176

    Google Scholar 

  • Pieroni P, Galli M, Brunori G (2003) Montemagno stories: narratives and videos as tools to facilitate re-construction of sustainable localities. J Agric Educ Ext 9:21–31. https://doi.org/10.1080/13892240385300051

    Article  Google Scholar 

  • Pinto-Correia T, Vos W (2004) Multifunctionality in Mediterranean landscapes-past and future. In: Jongman RHG (ed) The new dimensions of the European landscape. Springer, Wageningen, pp 135–164

    Chapter  Google Scholar 

  • Plieninger T, Kizos T, Bieling C et al (2015) Exploring ecosystem-change and society through a landscape lens: recent progress in European landscape research. Ecol Soc 20:10. https://doi.org/10.5751/ES-07443-200205

    Article  Google Scholar 

  • Pontius RG (2019) Component intensities to relate difference by category with difference overall. Int J Appl Earth Obs Geoinf 77:94–99. https://doi.org/10.1016/j.jag.2018.07.024

    Article  Google Scholar 

  • Pontius RGJ, Millones M (2011) Death to kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32:4407–4429. https://doi.org/10.1080/01431161.2011.552923

    Article  Google Scholar 

  • Pontius RGJ, Si K (2014) The total operating characteristic to measure diagnostic ability for multiple thresholds. Int J Geogr Inf Sci 28:570–583. https://doi.org/10.1080/13658816.2013.862623

    Article  Google Scholar 

  • Popescu R, Deodatis G, Nobahar A (2005) Effects of random heterogeneity of soil properties on bearing capacity. Probab Eng Mech 20:324–341. https://doi.org/10.1016/j.probengmech.2005.06.003

    Article  Google Scholar 

  • Puissant A, Malet J-P, Maquaire O (2006) Mapping landslide consequences in mountain areas; a tentative approach with a semi-quantitative procedure. In: SAGEO’2006

    Google Scholar 

  • Ramos IL (2010) Exploratory landscape scenarios’ in the formulation of ‘landscape quality objectives. Futures 42:682–692. https://doi.org/10.1016/j.futures.2010.04.005

    Article  Google Scholar 

  • Ramos MC, Cots-Folch R, Martínez-Casasnovas JA (2007) Sustainability of modern land terracing for vineyard plantation in a Mediterranean mountain environment—the case of the Priorat region (NE Spain). Geomorphology 86:1–11. https://doi.org/10.1016/j.geomorph.2006.08.004

    Article  Google Scholar 

  • Rizzo D (2009) Landscape-agronomic analysis in the agro-environmental fragility assessment of a terraced landscape. PhD thesis, Scuola Superiore Sant’Anna

    Google Scholar 

  • Rizzo D, Casella F (2008) Le sistemazioni idraulico-agrarie e forestali del paesaggio del Monte Pisano. In: Galli M, Rizzo D, Casella F (eds) Il paesaggio terrazzato del Monte Pisano tra permanenze e mutamenti. ETS, Pisa (ITA), pp 17–23

    Google Scholar 

  • Rizzo D, Casella F, Galli M, Bonari E (2009) La gestione delle sistemazioni idraulico-agrarie del Monte Pisano. Schede descrittive e operative. Scuola Superiore Sant’Anna

    Google Scholar 

  • Rizzo D, Galli M, Sabbatini T, Bonari E (2007) Terraced landscapes characterization. Developing a methodology to map and analyze the agricultural management impacts (Monte Pisano, Italy). Revue Internationale de Géomatique 17:431–447. https://doi.org/10.3166/geo.17.431-447

    Article  Google Scholar 

  • Rizzo D, Mari J-F, Marraccini E, Lazrak EG (2014) Agricultural landscape segmentation: a stochastic method to map heterogeneous variables. Lisboa, PRT

    Google Scholar 

  • Rizzo D, Marraccini E, Lardon S et al (2013) Farming systems designing landscapes: land management units at the interface between agronomy and geography. Geografisk Tidsskrift-Danish Journal of Geography 113:71–86. https://doi.org/10.1080/00167223.2013.849391

    Article  Google Scholar 

  • Rizzo D, Therond O, Lardy R et al (2019) A rapid, spatially explicit approach to describe cropping systems dynamics at the regional scale. Agric Syst 173:491–503. https://doi.org/10.1016/j.agsy.2019.04.003

    Article  Google Scholar 

  • Rotini OT, Carloni L, Lotti G, Panattoni A, Riffaldi R (1970) Carta agro-pedologica della Provincia di Pisa

    Google Scholar 

  • Rühl J, Pasta S, La Mantia T (2005) A method for the study of secondary succession processes in terraced old fields: the case study Pantelleria Island (Canale di Sicilia). Forest 2:388–398. https://doi.org/10.3832/efor0324-0020388

    Article  Google Scholar 

  • Savo V, Caneva G, McClatchey W et al (2013) Combining environmental factors and agriculturalists’ observations of environmental changes in the traditional terrace system of the Amalfi coast (southern Italy). Ambio:1–14. https://doi.org/10.1007/s13280-013-0433-3

  • Schoorl JM, Veldkamp A (2001) Linking land use and landscape process modelling: a case study for the Álora region (South Spain). Agric Ecosyst Environ 85:281–292. https://doi.org/10.1016/S0167-8809(01)00194-3

    Article  Google Scholar 

  • Smits PC, Dellepiane SG, Schowengerdt RA (1999) Quality assessment of image classification algorithms for land-cover mapping: a review and a proposal for a cost-based approach. Int J Remote Sens 20:1461–1486. https://doi.org/10.1080/014311699212560

    Article  Google Scholar 

  • Sofia G, Marinello F, Tarolli P (2014) A new landscape metric for the identification of terraced sites: the slope local length of auto-correlation (SLLAC). ISPRS J Photogramm Remote Sens 96:123–133. https://doi.org/10.1016/j.isprsjprs.2014.06.018

    Article  Google Scholar 

  • Solé-Benet A, Lázaro R, Domingo F, et al (2010) Why most agricultural terraces in steep slopes in semiarid SE Spain remain well preserved since their abandonment 50 years ago? https://doi.org/10.3989/Pirineos.2010.165011

  • Spanò A, Sammartano G, Tunin FC et al (2018) GIS-based detection of terraced landscape heritage: comparative tests using regional DEMs and UAV data. Appl Geomat:1–21. https://doi.org/10.1007/s12518-018-0205-7

  • Talamucci P (1984) Cotiche erbose e conservazione del suolo. Rivista di Agronomia 18:182–198

    Google Scholar 

  • Tarolli P, Preti F, Romano N (2014) Terraced landscapes: from an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene. https://doi.org/10.1016/j.ancene.2014.03.002

  • Tarolli P, Rizzo D, Brancucci G (2019) Terraced landscapes: land abandonment, soil degradation, and suitable management. In: World terraced landscapes: history, environment, quality of life. Springer International Publishing, Cham, pp 195–210

    Chapter  Google Scholar 

  • Tremblay M-A (1957) The key informant technique: a nonethnographic application. Am Anthropol 59:688–701. https://doi.org/10.1525/aa.1957.59.4.02a00100

    Article  Google Scholar 

  • Vallebona C, Pellegrino E, Frumento P, Bonari E (2015) Temporal trends in extreme rainfall intensity and erosivity in the Mediterranean region: a case study in southern Tuscany, Italy. Clim Chang 128:139–151. https://doi.org/10.1007/s10584-014-1287-9

    Article  Google Scholar 

  • Van Eetvelde V, Antrop M (2004) Analyzing structural and functional changes of traditional landscapes—two examples from Southern France. Landsc Urban Plan 67:79–95. https://doi.org/10.1016/S0169-2046(03)00030-6

    Article  Google Scholar 

  • van Ittersum MK, Rabbinge R (1997) Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crop Res 52:197–208. https://doi.org/10.1016/S0378-4290(97)00037-3

    Article  Google Scholar 

  • Varotto M, Ferrarese F, Pappalardo SE (2019) Italian terraced landscapes: the shapes and the trends. In: Varotto M, Bonardi L, Tarolli P (eds) World terraced landscapes: history, environment, quality of life. Springer International Publishing, Cham, pp 27–43

    Chapter  Google Scholar 

  • Vos W, Meekes H (1999) Trends in European cultural landscape development: perspectives for a sustainable future. Landsc Urban Plan 46:3–14. https://doi.org/10.1016/S0169-2046(99)00043-2

    Article  Google Scholar 

  • Wang DH, Medley KE (2004) Land use model for carbon conservation across a midwestern USA landscape. Landsc Urban Plan 69:451–465. https://doi.org/10.1016/j.landurbplan.2004.01.002

    Article  Google Scholar 

  • Zanchi C (2005) La sostenibilità del paesaggio agrario. In: Il paesaggio agrario del Montalbano: identità, sostenibilità, società locale. Passigli, pp 147–165

    Google Scholar 

  • Zêzere JL, Reis E, Garcia R et al (2004) Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 4:133–146. https://doi.org/10.5194/nhess-4-133-2004

    Article  Google Scholar 

  • Zuazo VHD, Ruiz JA, Raya AM, Tarifa DF (2005) Impact of erosion in the taluses of subtropical orchard terraces. Agric Ecosyst Environ 107:199–210. https://doi.org/10.1016/j.agee.2004.11.011

    Article  Google Scholar 

Download references

Acknowledgements

The authors warmly thank Mariassunta Galli (Scuola Superiore Sant’Anna) for help with project coordination and interactions with the local actors; Alberto Antinori (GeoInformatiX) for the high-quality DEM; and Marta Debolini (Scuola Superiore Sant’Anna, now at INRAE) for participating in the field survey. We also acknowledge the administrative personnel of the municipalities of Calci, Buti and Vicopisano and the Province of Pisa, as well as the Cooperativa Agrituristica Lungomonte and the Consorzio Toscano Forestale for their involvement in data collection and continuous feedback during the assessment process. Finally, the authors deeply thank Fabio Casella for sharing the precious historical and technical knowledge about the structure and functioning of the terraced system and its crucial role throughout the research.

Authors’ Contribution

DR and EB conceived and designed the analysis; DR collected the data; TS contributed data and analysis tools; DR performed the analysis; DR wrote the article; all authors revised the final version.

Funding

This study was part of the Ph.D. thesis of DR, funded by the Scuola Superiore Sant’Anna. The study also received funding from the Fondazione Cassa di Risparmio di Pisa (2004–2006) to develop a method to optimise landscape management and reduce hydrogeological risk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Rizzo .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no competing interest.

Appendix

Appendix

Confusion matrix for the total fragility map. Values are expressed as a number of pixels (10 m per side)

Comparison sample map

Field sample reference

Total per row

Total in the entire map

Class 1

Class 2

Class 3

Class 4

(before majority filter)

Class 1

1469

343

100

0

1912

49,228

27.2%

Class 2

136

860

655

460

2111

45,260

25.0%

Class 3

17

136

2589

1464

4206

61,008

33.6%

Class 4

0

9

256

1009

1274

25,694

14.2%

Total per column

1622

1348

3600

2933

9503

181,190

 
 

17.0%

14.2%

37.9%

30.9%

100%

100%

 

The total area of pixels assessed (95.03 ha) was smaller than the surveyed area (102.28 ha) because the majority-filter algorithm applied shrank the total area by 0.47%. In addition, 5 polygons of the field survey (corresponding to 0.171 ha) were excluded due to transcription errors.

Alternative accuracy assessment metrics based on this confusion matrix

Calculation based on the PontiusMatrix version 42 spreadsheet available at www.clarku.edu/∼rpontius including metrics presented in part by Pontius and Millones (2011).

There are six horizontally stacked bar graphs. Graphs A and D account the entry size and intensity for 4 classes. Graphs B and E account the category size and intensity for quantity, exchange and shift. Graphs C and F account the difference size and intensity for categories.

The first row of graphs (a and d) provides an alternative illustration of the confusion matrix. The second row (b and e) details the error component (misses and false alarms). The last row (c and f) summarises the quantity error and allocation errors, further divided into exchange (i.e. allocation error that could be corrected by exchanging pairs of involved pixels) and shift (i.e. pure allocation error that cannot be corrected). In summary, classes 1–3 are overestimated, with a prevalence of false alarms (i.e. commission errors), whereas class 4 has mostly misses (i.e. omission errors). While exchange errors are evenly distributed among the four classes, shift errors concern only classes 2 and 3. Overall, this seems to confirm, as noted in the article, the ability to change the limits between the intermediate fragility classes or to merge them.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizzo, D., Sabbatini, T., Bonari, E. (2022). A Method to Assess the Fragility of a Terraced System as an Example of Landscape Agronomic Analysis. In: Rizzo, D., Marraccini, E., Lardon, S. (eds) Landscape Agronomy. Springer, Cham. https://doi.org/10.1007/978-3-031-05263-7_4

Download citation

Publish with us

Policies and ethics