Skip to main content

From Exosomes to Circulating Tumor Cells: Using Microfluidics to Detect High Predictive Cancer Biomarkers

  • Chapter
  • First Online:
Microfluidics and Biosensors in Cancer Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1379))

Abstract

Early cancer screening and effective diagnosis is the most effective form to diminish the number of cancer-related deaths. Liquid biopsy constitutes an attractive alternative to tumor biopsy due to its non-invasive nature and sample accessibility, which permits effective screening and patient monitoring. Within the plethora of biomarkers present in circulation, liquid biopsy has mainly been performed by analyzing circulating tumor cells, and more recently, extracellular vesicles. Tracking these biological particles could provide valuable insights into cancer origin, progression, treatment efficacy, and patient prognosis. Microfluidic devices have emerged as viable solutions for point-of-care cancer screening and monitoring due to their user-friendly operation, low operation costs, and capability of processing, quantifying, and analyzing these bioparticles in a single device. However, the size difference between cells and exosomes (micrometer vs nanometer) requires an adaptation of microfluidic isolation approaches, particularly in label-free methodologies governed by particle and fluid mechanics. This chapter will explore the theory behind particle isolation and sorting in different microfluidic techniques necessary to guide researchers into the design and development of such devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5:402–418

    Article  Google Scholar 

  3. Abdalla TSA, Meiners J, Riethdorf S et al (2021) Prognostic value of preoperative circulating tumor cells counts in patients with UICC stage I-IV colorectal cancer. PLoS One 16:e0252897. https://doi.org/10.1371/journal.pone.0252897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee CH, Hsieh JCH, Wu TMH et al (2019) Baseline circulating stem-like cells predict survival in patients with metastatic breast cancer. BMC Cancer 19:1–10. https://doi.org/10.1186/s12885-019-6370-1

    Article  CAS  Google Scholar 

  5. Moreno JG, Miller MC, Gross S et al (2005) Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology 65:713–718. https://doi.org/10.1016/j.urology.2004.11.006

    Article  PubMed  Google Scholar 

  6. Aaltonen KE, Novosadová V, Bendahl PO et al (2017) Molecular characterization of circulating tumor cells from patients with metastatic breast cancer reflects evolutionary changes in gene expression under the pressure of systemic therapy. Oncotarget 8:45544–45565. https://doi.org/10.18632/oncotarget.17271

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bredemeier M, Edimiris P, Tewes M et al (2016) Establishment of a multimarker qPCR panel for the molecular characterization of circulating tumor cells in blood samples of metastatic breast cancer patients during the course of palliative treatment. Oncotarget 7:41677–41690. https://doi.org/10.18632/oncotarget.9528

    Article  PubMed  PubMed Central  Google Scholar 

  8. De Luca F, Rotunno G, Salvianti F et al (2016) Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget 7:26107–26119. https://doi.org/10.18632/oncotarget.8431

    Article  PubMed  PubMed Central  Google Scholar 

  9. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  Google Scholar 

  10. Hoshino A, Costa-Silva B, Shen T-L et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335. https://doi.org/10.1038/nature15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thakur BK, Zhang H, Becker A et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–769. https://doi.org/10.1038/cr.2014.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu R, Rai A, Chen M et al (2018) Extracellular vesicles in cancer – implications for future improvements in cancer care. Nat Rev Clin Oncol 15:617–638

    Article  CAS  Google Scholar 

  13. Russano M, Napolitano A, Ribelli G et al (2020) Liquid biopsy and tumor heterogeneity in metastatic solid tumors: the potentiality of blood samples. J Exp Clin Cancer Res 39:95. https://doi.org/10.1186/s13046-020-01601-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou B, Xu K, Zheng X et al (2020) Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther 5:1–14. https://doi.org/10.1038/s41392-020-00258-9

    Article  CAS  Google Scholar 

  15. Squires TM, Messinger RJ, Manalis SR (2008) Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol 26:417–426. https://doi.org/10.1038/nbt1388

    Article  CAS  PubMed  Google Scholar 

  16. Dorayappan KDP, Gardner ML, Hisey CL et al (2019) A microfluidic chip enables isolation of exosomes and establishment of their protein profiles and associated signaling pathways in ovarian cancer. Cancer Res 79:3503–3513. https://doi.org/10.1158/0008-5472.CAN-18-3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hisey CL, Dorayappan KDP, Cohn DE et al (2018) Microfluidic affinity separation chip for selective capture and release of label-free ovarian cancer exosomes. Lab Chip 18:3144–3153. https://doi.org/10.1039/c8lc00834e

    Article  CAS  PubMed  Google Scholar 

  18. Lo TW, Zhu Z, Purcell E et al (2020) Microfluidic device for high-throughput affinity-based isolation of extracellular vesicles. Lab Chip 20:1762–1770. https://doi.org/10.1039/c9lc01190k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barriere G, Fici P, Gallerani G et al (2014) Circulating tumor cells and epithelial, mesenchymal and stemness markers: characterization of cell subpopulations. Ann Transl Med 2:109

    PubMed  PubMed Central  Google Scholar 

  20. Cho HY, Choi JH, Lim J et al (2021) Microfluidic chip-based cancer diagnosis and prediction of relapse by detecting circulating tumor cells and circulating cancer stem cells. Cancers (Basel) 13:1–17

    Google Scholar 

  21. Kang YT, Hadlock T, Lo TW et al (2020) Dual-isolation and profiling of circulating tumor cells and cancer exosomes from blood samples with melanoma using Immunoaffinity-based microfluidic interfaces. Adv Sci 7:2001581. https://doi.org/10.1002/advs.202001581

    Article  CAS  Google Scholar 

  22. Hou HW, Warkiani ME, Khoo BL et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3:1–8. https://doi.org/10.1038/srep01259

    Article  CAS  Google Scholar 

  23. Willms E, Cabañas C, Mäger I et al (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 9:1. https://doi.org/10.3389/fimmu.2018.00738

    Article  CAS  Google Scholar 

  24. Skotland T, Sandvig K, Llorente A (2017) Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res 66:30–41. https://doi.org/10.1016/j.plipres.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  25. Kang YT, Purcell E, Palacios-Rolston C et al (2019) Isolation and profiling of circulating tumor-associated exosomes using extracellular vesicular lipid–protein binding affinity based microfluidic device. Small 15. https://doi.org/10.1002/smll.201903600

  26. Cho H, Kim J, Song H et al (2018) Microfluidic technologies for circulating tumor cell isolation. Analyst 143:2936–2970

    Article  CAS  Google Scholar 

  27. Contreras-Naranjo JC, Wu HJ, Ugaz VM (2017) Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip 17:3558–3577

    Article  CAS  Google Scholar 

  28. Iliescu FS, Vrtačnik D, Neuzil P, Iliescu C (2019) Microfluidic technology for clinical applications of exosomes. Micromachines 10

    Google Scholar 

  29. Lei KF (2020) A review on microdevices for isolating circulating tumor cells. Micromachines:11

    Google Scholar 

  30. Gou Y, Jia Y, Wang P, Sun C (2018) Progress of inertial microfluidics in principle and application. Sensors (Basel):18

    Google Scholar 

  31. Zhou Y, Ma Z, Tayebi M, Ai Y (2019) Submicron particle focusing and exosome sorting by wavy microchannel structures within viscoelastic fluids. Anal Chem 91:4577–4584. https://doi.org/10.1021/acs.analchem.8b05749

    Article  CAS  PubMed  Google Scholar 

  32. Xiang N, Zhang X, Dai Q et al (2016) Fundamentals of elasto-inertial particle focusing in curved microfluidic channels. Lab Chip 16:2626–2635. https://doi.org/10.1039/c6lc00376a

    Article  CAS  PubMed  Google Scholar 

  33. Tay HM, Kharel S, Dalan R et al (2017) Rapid purification of sub-micrometer particles for enhanced drug release and microvesicles isolation. NPG Asia Mater 9:e434–e434. https://doi.org/10.1038/am.2017.175

    Article  Google Scholar 

  34. Razavi Bazaz S, Mashhadian A, Ehsani A et al (2020) Computational inertial microfluidics: a review. Lab Chip 20:1023–1048

    Article  CAS  Google Scholar 

  35. Zhang J, Yan S, Yuan D et al (2016) Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16:10–34

    Article  CAS  Google Scholar 

  36. Smith KJ, Jana JA, Kaehr A et al (2021) Inertial focusing of circulating tumor cells in whole blood at high flow rates using the microfluidic CTCKey™ device for CTC enrichment. Lab Chip 21:3559–3572. https://doi.org/10.1039/D1LC00546D

    Article  CAS  PubMed  Google Scholar 

  37. Renier C, Pao E, Che J et al (2017) Label-free isolation of prostate circulating tumor cells using vortex microfluidic technology. npj Precis Oncol 1:15. https://doi.org/10.1038/s41698-017-0015-0

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu C, Guo J, Tian F et al (2017) Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano 11:6968–6976. https://doi.org/10.1021/acsnano.7b02277

    Article  CAS  PubMed  Google Scholar 

  39. Asghari M, Cao X, Mateescu B et al (2020) Oscillatory viscoelastic microfluidics for efficient focusing and separation of nanoscale species. ACS Nano 14:422–433. https://doi.org/10.1021/acsnano.9b06123

    Article  CAS  PubMed  Google Scholar 

  40. Lemaire CA, Liu SZ, Wilkerson CL et al (2018) Fast and label-free isolation of circulating tumor cells from blood: from a research microfluidic platform to an automated fluidic instrument, VTX-1 liquid biopsy system. SLAS Technol 23:16–29. https://doi.org/10.1177/2472630317738698

    Article  CAS  PubMed  Google Scholar 

  41. Guglielmi R, Lai Z, Raba K et al (2020) Technical validation of a new microfluidic device for enrichment of CTCs from large volumes of blood by using buffy coats to mimic diagnostic leukapheresis products. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-77227-3

    Article  CAS  Google Scholar 

  42. Warkiani ME, Khoo BL, Wu L et al (2016) Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat Protoc 11:134–148. https://doi.org/10.1038/nprot.2016.003

    Article  CAS  PubMed  Google Scholar 

  43. Xu Z, Wang S, Li Y et al (2014) Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl Mater Interfaces 6:17268–17276. https://doi.org/10.1021/am505308f

    Article  CAS  PubMed  Google Scholar 

  44. Kaneda Y, Tsutsumi Y, Yoshioka Y et al (2004) The use of PVP as a polymeric carrier to improve the plasma half-life of drugs. Biomaterials 25:3259–3266. https://doi.org/10.1016/j.biomaterials.2003.10.003

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen MK, Lee DS (2010) Bioadhesive PAA-PEG-PAA triblock copolymer hydrogels for drug delivery in oral cavity. Macromol Res 18:284–288. https://doi.org/10.1007/s13233-010-0315-5

    Article  CAS  Google Scholar 

  46. Dehghani M, Lucas K, Flax J et al (2019) Tangential flow microfluidics for the capture and release of nanoparticles and extracellular vesicles on conventional and ultrathin membranes. Adv Mater Technol 4:1900539. https://doi.org/10.1002/admt.201900539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen K, Amontree J, Varillas J et al (2020) Incorporation of lateral microfiltration with immunoaffinity for enhancing the capture efficiency of rare cells. Sci Rep 10:14210. https://doi.org/10.1038/s41598-020-71041-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lyklema J (2005) Fundamentals of interface and colloid science, 1st edn. Elsevier

    Google Scholar 

  49. Chen Z, Yang Y, Yamaguchi H et al (2020) Isolation of cancer-derived extracellular vesicle subpopulations by a size-selective microfluidic platform. Biomicrofluidics 14. https://doi.org/10.1063/5.0008438

  50. Cho S, Jo W, Heo Y et al (2016) Isolation of extracellular vesicle from blood plasma using electrophoretic migration through porous membrane. Sens Actuators B 233:289–297. https://doi.org/10.1016/j.snb.2016.04.091

    Article  CAS  Google Scholar 

  51. Davies RT, Kim J, Jang SC et al (2012) Microfluidic filtration system to isolate extracellular vesicles from blood. Lab Chip 12:5202–5210. https://doi.org/10.1039/c2lc41006k

    Article  CAS  PubMed  Google Scholar 

  52. Shilton RJ, Travagliati M, Beltram F, Cecchini M (2014) Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves. Adv Mater 26:4941–4946. https://doi.org/10.1002/adma.201400091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu H, Ao Z, Cai B et al (2018) Size-amplified acoustofluidic separation of circulating tumor cells with removable microbeads. Nano Futur 2:025004. https://doi.org/10.1088/2399-1984/aabf50

    Article  CAS  Google Scholar 

  54. Wu Z, Jiang H, Zhang L et al (2019) The acoustofluidic focusing and separation of rare tumor cells using transparent lithium niobate transducers. Lab Chip 19:3922–3930. https://doi.org/10.1039/c9lc00874h

    Article  CAS  PubMed  Google Scholar 

  55. Li S, Ma F, Bachman H et al (2017) Acoustofluidic bacteria separation. J Micromech Microeng 27:015031. https://doi.org/10.1088/1361-6439/27/1/015031

    Article  PubMed  Google Scholar 

  56. Lee K, Shao H, Weissleder R, Lee H (2015) Acoustic purification of extracellular microvesicles. ACS Nano 9:2321–2327. https://doi.org/10.1021/nn506538f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu M, Ouyang Y, Wang Z et al (2017) Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A 114:10584–10589. https://doi.org/10.1073/pnas.1709210114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Inglis DW, Davis JA, Austin RH, Sturm JC (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–658. https://doi.org/10.1039/b515371a

    Article  CAS  PubMed  Google Scholar 

  59. Wunsch BH, Smith JT, Gifford SM et al (2016) Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20nm. Nat Nanotechnol 11:936–940. https://doi.org/10.1038/nnano.2016.134

    Article  CAS  PubMed  Google Scholar 

  60. Liu Z, Huang F, Du J et al (2013) Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure. Biomicrofluidics 7. https://doi.org/10.1063/1.4774308

  61. Liu Z, Zhang W, Huang F et al (2013) High throughput capture of circulating tumor cells using an integrated microfluidic system. Biosens Bioelectron 47:113–119. https://doi.org/10.1016/j.bios.2013.03.017

    Article  CAS  PubMed  Google Scholar 

  62. Liu Z, Huang Y, Liang W et al (2021) Cascaded filter deterministic lateral displacement microchips for isolation and molecular analysis of circulating tumor cells and fusion cells. Lab Chip 21:2881–2891. https://doi.org/10.1039/D1LC00360G

    Article  CAS  PubMed  Google Scholar 

  63. Zhao W, Liu Y, Jenkins BD et al (2019) Tumor antigen-independent and cell size variation-inclusive enrichment of viable circulating tumor cells. Lab Chip 19:1860–1876. https://doi.org/10.1039/c9lc00210c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zeming KK, Thakor NV, Zhang Y, Chen CH (2016) Real-time modulated nanoparticle separation with an ultra-large dynamic range. Lab Chip 16:75–85. https://doi.org/10.1039/c5lc01051a

    Article  CAS  PubMed  Google Scholar 

  65. Liu Y, Zhao W, Cheng R et al (2020) Label-free ferrohydrodynamic separation of exosome-like nanoparticles. Lab Chip 20:3187–3201. https://doi.org/10.1039/d0lc00609b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao W, Cheng R, Jenkins BD et al (2017) Label-free ferrohydrodynamic cell separation of circulating tumor cells. Lab Chip 17:3097–3111. https://doi.org/10.1039/c7lc00680b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.C. acknowledges the financial support from the Portuguese Foundation for Science and Technology (FCT) under the program CEEC Individual 2017 (CEECIND/00352/2017). C.M.A, S.C.K, and D.C. also thank the support from the FCT under the scope of the projects 2MATCH (PTDC/BTM-ORG/28070/2017) and BREAST-IT (PTDC/BTM-ORG/28168/2017) funded by the Programa Operacional Regional do Norte supported by European Regional Development Funds (ERDF). The authors also thank the financial support from the European Union Framework Program for Research and Innovation Horizon 2020 on the FoReCaST project under (Grant Number: 668983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina M. Abreu .

Editor information

Editors and Affiliations

Ethics declarations

None.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abreu, C.M., Caballero, D., Kundu, S.C., Reis, R.L. (2022). From Exosomes to Circulating Tumor Cells: Using Microfluidics to Detect High Predictive Cancer Biomarkers. In: Caballero, D., Kundu, S.C., Reis, R.L. (eds) Microfluidics and Biosensors in Cancer Research. Advances in Experimental Medicine and Biology, vol 1379. Springer, Cham. https://doi.org/10.1007/978-3-031-04039-9_15

Download citation

Publish with us

Policies and ethics