Skip to main content

Fundamentals of Biosensors and Detection Methods

  • Chapter
  • First Online:
Microfluidics and Biosensors in Cancer Research

Abstract

Biosensors have a great impact on our society to enhance the life quality, playing an important role in the development of Point-of-Care (POC) technologies for rapid diagnostics, and monitoring of disease progression. COVID-19 rapid antigen tests, home pregnancy tests, and glucose monitoring sensors represent three examples of successful biosensor POC devices. Biosensors have extensively been used in applications related to the control of diseases, food quality and safety, and environment quality. They can provide great specificity and portability at significantly reduced costs. In this chapter are described the fundamentals of biosensors including the working principles, general configurations, performance factors, and their classifications according to the type of bioreceptors and transducers. It is also briefly illustrated the general strategies applied to immobilize biorecognition elements on the transducer surface for the construction of biosensors. Moreover, the principal detection methods used in biosensors are described, giving special emphasis on optical, electrochemical, and mass-based methods. Finally, the challenges for biosensing in real applications are addressed at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A (2013) Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 42:8733–8768. https://doi.org/10.1039/c3cs60141b

    Article  CAS  PubMed  Google Scholar 

  2. Castillo J et al (2004) Biosensors for life quality design, development and applications. Sensors Actuators B 102:179–194

    Article  CAS  Google Scholar 

  3. Walker JM, Rasooly A, Herold KE (2009) Biosensors and biodetection, vol 503. Humana Press

    Google Scholar 

  4. Barreiros dos Santos M (2014) Development of a multi-electrode impedimetric biosensor: detection of pathogenic bacteria and mycotoxins. University of Barcelona

    Google Scholar 

  5. Mallotra BD, Turner APF (2003) Advances in biosensors perspectives in biosensors, vol 5. Elsevier Science B.V

    Google Scholar 

  6. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254

    Article  CAS  PubMed  Google Scholar 

  7. Grieshaber D (2008) Electrochemical biosensors - sensor principles and architectures. Sensors 8:1400–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nayak M, Kotian A, Marathe S, Chakravortty D (2009) Detection of microorganisms using biosensors - a smarter way towards detection techniques. Biosens Bioelectron 25:661–667

    Article  CAS  PubMed  Google Scholar 

  9. Rasooly A, Prickril B (2009) Biosensors and biodetection methods and protocols. Methods. Springer Protocols

    Book  Google Scholar 

  10. Naresh V, Lee N (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Switzerland) 21:1–35

    Article  CAS  Google Scholar 

  11. Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Metkar SK, Girigoswami K (2019) Diagnostic biosensors in medicine – a review. Biocatal Agric Biotechnol 17:271–283

    Article  Google Scholar 

  13. Sharma H, Mutharasan R (2013) Review of biosensors for foodborne pathogens and toxins. Sensors Actuators B Chem 183:535–549

    Article  CAS  Google Scholar 

  14. Domínguez E, Narváez A (2005) Chapter 10. Non-affinity sensing technology: the exploitation of biocatalytic events for environmental analysis. In: Biosensors and modern biospecific analytical techniques, vol 44. Elsevier, pp 429–537

    Chapter  Google Scholar 

  15. Vo-Dinh T (2008) Micro and nanoscale biosensors and materials: biosensors and biochips. Springer

    Google Scholar 

  16. Shinde SB, Fernandes CB, Patravale VB (2012) Recent trends in in-vitro nanodiagnostics for detection of pathogens. J Control Release 159:164–180

    Article  CAS  PubMed  Google Scholar 

  17. Vo-Dinh T, Cullum B (2008) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366:540–551

    Article  Google Scholar 

  18. Zamora-Gálvez A, Morales-Narváez E, Mayorga-Martinez CC, Merkoçi A (2017) Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications. Appl Mater Today 9:387–401

    Article  Google Scholar 

  19. Hall RH (2002) Biosensor technologies for detecting microbiological foodborne hazards. Microbes Infect 4:425–432

    Article  PubMed  Google Scholar 

  20. Sinha A, Mugo SM, Zhao H, Chen J, Jain R (2019) Electrochemical immunosensors for rapid detection of breast cancer biomarkers. In: Advanced biosensors for health care applications. Elsevier. https://doi.org/10.1016/B978-0-12-815743-5.00005-6

    Chapter  Google Scholar 

  21. Ragavan KV, Rastogi NK, Thakur MS (2013) Sensors and biosensors for analysis of bisphenol-A. Trends Anal Chem 52:248–260

    Article  CAS  Google Scholar 

  22. Moina C, Ybarra G (2012) Fundamentals and applications of immunosensors. In: Chiu NHL (ed) Advances in immunoassy technology. IntechOpen

    Google Scholar 

  23. Skottrup PD, Nicolaisen M, Justesen AF (2008) Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 24:339–348

    Article  CAS  PubMed  Google Scholar 

  24. Byrne B, Stack E, Gilmartin N, O’Kennedy R (2009) Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors (Basel) 9:4407–4445

    Article  CAS  Google Scholar 

  25. Medyantseva EP, Khaldeeva EV, Budnikov GK (2001) Immunosensors in biology and medicine: analytical capabilities, problems, and prospects. J Anal Chem 56:886–900

    Article  CAS  Google Scholar 

  26. Zhang X, Ju H (2008) Electrochemical sensors, biosensors and their biomedical applications. Biosensors. Elsevier

    Google Scholar 

  27. Ziegler C (2000) Cell-based biosensors. Fresenius J Anal Chem 366:552–559

    Article  CAS  PubMed  Google Scholar 

  28. Banerjee P, Bhunia AK (2009) Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol 27:179–188

    Article  CAS  PubMed  Google Scholar 

  29. Weigum SE, Floriano PN, Christodoulides N, McDevitt JT (2007) Cell-based sensor for analysis of EGFR biomarker expression in oral cancer. Lab Chip 7:995–1003

    Article  CAS  PubMed  Google Scholar 

  30. Gupta N, Renugopalakrishnan V, Liepmann D, Paulmurugan R, Malhotra BD (2019) Cell-based biosensors: recent trends, challenges and future perspectives. Biosens Bioelectron 141:111435

    Article  CAS  PubMed  Google Scholar 

  31. Marazuela D, Moreno-Bondi MC (2002) Fiber-optic biosensors--an overview. Anal Bioanal Chem 372:664–682

    Article  CAS  PubMed  Google Scholar 

  32. Yolken RH (1980) Enzyme-linked immunosorbent assay (ELISA): a practical tool for rapid diagnosis of viruses and other infectious agents. Yale J Biol Med 53:85–92

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mani V, Chikkaveeraiah BV, Patel V, Gutkind JS, Rusling JF (2013) Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme- particle amplification. ACS Nano 83:1–11

    Google Scholar 

  34. Ohnuki H, Honjo R, Endo H, Imakubo T, Izumi M (2009) Amperometric cholesterol biosensors based on hybrid organic–inorganic Langmuir–Blodgett films. Thin Solid Films 518:596–599

    Article  CAS  Google Scholar 

  35. Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21:1405–1423

    Article  CAS  PubMed  Google Scholar 

  36. Malitesta C, Guascito MR (2005) Heavy metal determination by biosensors based on enzyme immobilised by electropolymerisation. Biosens Bioelectron 20:1643–1647

    Article  CAS  PubMed  Google Scholar 

  37. Zapp E et al (2011) Biomonitoring of methomyl pesticide by laccase inhibition on sensor containing platinum nanoparticles in ionic liquid phase supported in montmorillonite. Sensors Actuators B Chem 155:331–339

    Article  CAS  Google Scholar 

  38. Liu H, Ge J, Ma E, Yang L (2018) Advanced biomaterials for biosensor and theranostics. In: Biomaterials in translational medicine: a biomaterials approach. Elsevier. https://doi.org/10.1016/B978-0-12-813477-1.00010-4

    Chapter  Google Scholar 

  39. Van Dorst B et al (2010) Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 26:1178–1194

    Article  PubMed  CAS  Google Scholar 

  40. Perumal V, Hashim U (2014) Advances in biosensors: principle, architecture and applications. J Appl Biomed 12:1–15

    Article  Google Scholar 

  41. Lui C, Cady NC, Batt C, a. (2009) Nucleic acid-based detection of bacterial pathogens using integrated microfluidic platform systems. Sensors 9:3713–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chua A, Yean CY, Ravichandran M, Lim B, Lalitha P (2011) A rapid DNA biosensor for the molecular diagnosis of infectious disease. Biosens Bioelectron 26:3825–3831

    Article  CAS  PubMed  Google Scholar 

  43. Bang J et al (2013) Development of a random genomic DNA microarray for the detection and identification of listeria monocytogenes in milk. Int J Food Microbiol 161:134–141

    Article  CAS  PubMed  Google Scholar 

  44. Trevino V, Falciani F, Barrera-saldaña HA (2007) DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol Med 13:527–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang X-H, Kong W-J, Yang M-H, Zhao M, Ouyang Z (2013) Application of aptamer identification technology in rapid analysis of mycotoxins. Chin J Anal Chem 41:297–306

    Article  CAS  Google Scholar 

  46. Luo X, Davis JJ (2013) Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 42:5944–5962

    Article  CAS  PubMed  Google Scholar 

  47. Song S, Wang L, Li J, Zhao J, Fan C (2008) Aptamer-based biosensors. Trends Anal Chem 27:108–117

    Article  CAS  Google Scholar 

  48. Zourob M, Elwary S, Turner A (2008) Principles of bacterial detection: biosensors, recognition receptors and microsystems. Consultant. Springer

    Book  Google Scholar 

  49. Zhang Z et al (2009) A sensitive impedimetric thrombin aptasensor based on polyamidoamine dendrimer. Talanta 78:1240–1245

    Article  CAS  PubMed  Google Scholar 

  50. Yang H, Ji J, Liu Y, Kong J, Liu B (2009) An aptamer-based biosensor for sensitive thrombin detection. Electrochem Commun 11:38–40

    Article  CAS  Google Scholar 

  51. Wochner A et al (2008) A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal Biochem 373:34–42

    Article  CAS  PubMed  Google Scholar 

  52. Zhao J, Zhang L, Chen C, Jiang J, Yu R (2012) A novel sensing platform using aptamer and RNA polymerase-based amplification for detection of cancer cells. Anal Chim Acta 745:106–111

    Article  CAS  PubMed  Google Scholar 

  53. Lee YJ, Han SR, Maeng J-S, Cho Y-J, Lee S-W (2012) In vitro selection of Escherichia coli O157:H7-specific RNA aptamer. Biochem Biophys Res Commun 417:414–420

    Article  CAS  PubMed  Google Scholar 

  54. D’Orazio P (2003) Biosensors in clinical chemistry. Clin Chim Acta 334:41–69

    Article  PubMed  CAS  Google Scholar 

  55. Saletti-cuesta L et al (2020) Nanomaterials in biosensors: fundamentals and applications. Sustain (Switz) 4 64–69

    Google Scholar 

  56. Wang Y, Ye Z, Ying Y (2012) New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors 12:3449–3471

    Article  PubMed  PubMed Central  Google Scholar 

  57. Parida SK, Dash S, Patel S, Mishra BK (2006) Adsorption of organic molecules on silica surface. Adv Colloid Interf Sci 121:77–110

    Article  CAS  Google Scholar 

  58. Heitz F, Van Mau N (2002) Protein structural changes induced by their uptake at interfaces. Biochim Biophys Acta 1597:1–11

    Article  CAS  PubMed  Google Scholar 

  59. Zhou H, Dill KA (2001) Stabilization of proteins in confined spaces. Biochemistry 40:1–5

    Article  CAS  Google Scholar 

  60. Cosnier S (2003) Biosensors based on electropolymerized films: new trends. Anal Bioanal Chem 377:507–520

    Article  CAS  PubMed  Google Scholar 

  61. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  PubMed  Google Scholar 

  62. Hermanson GT (2008) Bioconjugate techniques. Academic Press

    Google Scholar 

  63. Gaviria-arroyave MI, Cano JB, Peñuela GA (2020) Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: a critical review. Talanta Open 2:100006

    Article  Google Scholar 

  64. da Silva ETSG et al (2017) Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem 4:778–794

    Article  CAS  Google Scholar 

  65. Malekzad H, Sahandi Zangabad P, Mirshekari H, Karimi M, Hamblin MR (2017) Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 6:301–329

    Article  CAS  PubMed  Google Scholar 

  66. Zhang Y, Lyu H (2021) Application of biosensors based on nanomaterials in cancer cell detection. J Phys Conf Ser 1948:012149

    Article  CAS  Google Scholar 

  67. Cho IH, Kim DH, Park S (2020) Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res 24:1–12

    Article  CAS  Google Scholar 

  68. Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:1–10

    Article  CAS  Google Scholar 

  69. Su H et al (2017) Nanomaterial-based biosensors for biological detections. Adv Heal Care Technol 3:19–29

    Article  Google Scholar 

  70. Wark AW, Lee J, Kim S, Faisal SN, Lee HJ (2010) Bioaffinity detection of pathogens on surfaces. J Ind Eng Chem 16:169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sobiepanek A, Kobiela T (2018) Application of biosensors in cancer research. Rev Res Cancer 4:4–12

    Google Scholar 

  72. Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60:91–100

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen YT et al (2020) Review of integrated optical biosensors for point-of-care applications. Biosensors 10:1–22

    Article  Google Scholar 

  74. Kudlacek O, Gsandtner I, Ibrišimović E, Nanoff C (2008) Fluorescence resonance energy transfer (FRET) sensors. BMC Pharmacol 8:A44

    Article  PubMed Central  Google Scholar 

  75. Tainaka K et al (2010) Design strategies of fluorescent biosensors based on biological macromolecular receptors. Sensors 10:1355–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nawrot W, Drzozga K, Baluta S, Cabaj J, Malecha K (2018) A fluorescent biosensors for detection vital body fluids’ agents. Sensors (Switzerland) 18:1–21

    Article  CAS  Google Scholar 

  77. Shaoying L, Wang Y (2011) FRET biosensors for cancer detection and evaluation of drug efficacy. Clin Cancer Res 16:3822–3824

    Google Scholar 

  78. Girigoswami K, Akhtar N (2019) Nanobiosensors and fluorescence based biosensors: an overview. Int J Nano Dimens 10:1–17

    CAS  Google Scholar 

  79. Yang M et al (2020) Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chem Soc Rev 49:6800–6815

    Article  CAS  PubMed  Google Scholar 

  80. Fereja TH, Hymete A, Gunasekaran T (2013) A recent review on chemiluminescence reaction, principle and application on pharmaceutical analysis. ISRN Spectrosc 2013:1–12

    Article  CAS  Google Scholar 

  81. García-Campaña AM, Baeyens WRG (2000) Principles and recent analytical applications of chemiluminescence. Analusis 28:686–698

    Article  Google Scholar 

  82. Babamiri B, Bahari D, Salimi A (2019) Highly sensitive bioaffinity electrochemiluminescence sensors: recent advances and future directions. Biosens Bioelectron 142:111530

    Article  CAS  PubMed  Google Scholar 

  83. Choi G, Kim E, Park E, Lee JH (2017) A cost-effective chemiluminescent biosensor capable of early diagnosing cancer using a combination of magnetic beads and platinum nanoparticles. Talanta 162:38–45

    Article  CAS  PubMed  Google Scholar 

  84. Zakir Hossain SM (2016) Enzyme-luminescence method: tool for real-time monitoring of natural neurotoxins in vitro and l-glutamate release from primary cortical neurons. Biotechnol Rep 9:57–65

    Article  CAS  Google Scholar 

  85. Vdovenko MM, Hung CT, Sakharov IY, Yu FY (2013) Determination of okadaic acid in shellfish by using a novel chemiluminescent enzyme-linked immunosorbent assay method. Talanta 116:343–346

    Article  CAS  PubMed  Google Scholar 

  86. Calabretta MM et al (2021) Paper-based immunosensors with bio-chemiluminescence detection. Sensors 21:4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Long F, Zhu A, Gu C, Shi H (2013) Recent Progress in optical biosensors for environmental applications. In: State of the art in biosensors. IntechOpen

    Google Scholar 

  88. Lazcka O, Del Campo FJ, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217

    Article  CAS  PubMed  Google Scholar 

  89. Tudos AJ, Schasfoort RBM (1968) Introduction to surface plasmon resonance. Time

    Google Scholar 

  90. Konradi R, Textor M, Reimhult E (2012) Using complementary acoustic and optical techniques for quantitative monitoring of biomolecular adsorption at interfaces. Biosensors 2:341–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim DM, Park JS, Jung SW, Yeom J, Yoo SM (2021) Biosensing applications using nanostructure-based localized surface plasmon resonance sensors. Sensors 21:1–27

    CAS  Google Scholar 

  92. Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1:219–228

    Article  CAS  PubMed  Google Scholar 

  93. Wang Y, Tang L (2015) Multiplexed gold nanorod array biochip for multi-sample analysis. Biosens Bioelectron 67:18–24

    Article  CAS  PubMed  Google Scholar 

  94. Dahlin AB, Tegenfeldt JO, Höök F (2006) Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem 78:4416–4423

    Article  CAS  PubMed  Google Scholar 

  95. Guo L et al (2015) Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 10:213–239

    Article  CAS  Google Scholar 

  96. Sannomiya T, Vörös J (2011) Single plasmonic nanoparticles for biosensing. Trends Biotechnol 29:343–351

    Article  CAS  PubMed  Google Scholar 

  97. Li P et al (2020) Fundamentals and applications of surface-enhanced Raman spectroscopy–based biosensors. Curr Opin Biomed Eng 13:51–59

    Article  CAS  Google Scholar 

  98. Szaniawska A, Kudelski A (2021) Applications of surface-enhanced Raman scattering in biochemical and medical analysis. Front Chem 9:296

    Article  CAS  Google Scholar 

  99. George SD (2020) Surface-enhanced Raman scattering substrates: fabrication, properties, and applications. In: Inamuddin, Boddula R, Asiri AM (eds) Self-standing substrates: materials and applications. Springer International Publishing, pp 83–118. https://doi.org/10.1007/978-3-030-29522-6_3

    Chapter  Google Scholar 

  100. Quarin S, Strobbia P (2021) Recent advances towards point-of-care applications of surface-enhanced Raman scattering sensing. Front Chem 9:714113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Abalde-Cela S et al (2010) Surface-enhancement Raman scattering biomedical applications of plasmonic colloidal particles. J R Soc Interface 7:S435–S450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang J, Chen Q, Belwal T, Lin X, Luo Z (2021) Insights into chemometric algorithms for quality attributes and hazards detection in foodstuffs using Raman/surface enhanced Raman spectroscopy. Compr Rev Food Sci Food Saf 20:2476–2507

    Article  PubMed  Google Scholar 

  103. ALS. ALS obtains FDA registrations. https://www.alsglobal.pt/noticias/ALS-obtains-FDA-registrations_1455

  104. Pohanka M (2020) Colorimetric hand-held sensors and biosensors with a small digital camera as signal recorder, a review. Rev Anal Chem 39:20–30

    Article  CAS  Google Scholar 

  105. Tanaka R et al (2006) A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem 385:1414–1420

    Article  CAS  PubMed  Google Scholar 

  106. Kim J, Campbell AS, de Ávila BEF, Wang J (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37:389–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19:1239–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tothill IE, Turner APF (2003) Biosensors. In: Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, pp 41–46

    Google Scholar 

  109. Karimi-Maleh H et al (2021) A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 184:113252

    Article  CAS  PubMed  Google Scholar 

  110. Pisoschi AM (2016) Potentiometric biosensors: concept and analytical applications-an editorial. Biochem Anal Biochem 5:19–20

    Article  Google Scholar 

  111. Vanarsdale E, Pitzer J, Payne GF, Bentley WE (2020) Redox electrochemistry to interrogate and control biomolecular communication. ISCIENCE 23:101545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fang C, He J, Chen Z (2011) A disposable amperometric biosensor for determining total cholesterol in whole blood. Sensors Actuators B Chem 155:545–550

    Article  CAS  Google Scholar 

  113. Yoo E, Lee S (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10:4558–4576

    Article  PubMed  PubMed Central  Google Scholar 

  114. Weibel MK, Bright HJ (1971) The glucose oxidase mechanism. J Biol Chem 246:2734–2744

    Article  CAS  PubMed  Google Scholar 

  115. Srivastava KR, Awasthi S, Mishra PK (2020) Biosensors/molecular tools for detection of waterborne pathogens. In: Waterborne pathogens: detection and treatment. Elsevier. https://doi.org/10.1016/B978-0-12-818783-8.00013-X

    Chapter  Google Scholar 

  116. Materials I, Heidelberg SB (2012) Electrochemical methods. In: Electrochemistry of insertion materials for hydrogen and lithium. Springer. https://doi.org/10.1007/978-3-642-29464-8

    Chapter  Google Scholar 

  117. Weber SG, Purdy WC (1979) Homogeneous voltammetric immunoassay: a preliminary study. Anal Lett 12:1–9

    Article  CAS  Google Scholar 

  118. Felix FS, Baccaro ALB, Angnes L (2018) Disposable voltammetric immunosensors integrated with microfluidic platforms for biomedical, agricultural and food analyses: a review. Sensors (Basel). 18:4124

    Article  PubMed Central  CAS  Google Scholar 

  119. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892

    Article  CAS  PubMed  Google Scholar 

  120. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555–1567

    Article  CAS  PubMed  Google Scholar 

  121. Laschuk NO, Easton EB, Zenkina OV (2021) Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv 11:27925–27936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Guo X et al (2012) Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. Anal Chem 84:241–246

    Article  CAS  PubMed  Google Scholar 

  123. Chen H et al (2005) Detection of immobilized on self-assembled monolayer (SAM) of alkanethiolate using electrochemical impedance spectroscopy. Anal Chim Acta 554:52–59

    Article  CAS  Google Scholar 

  124. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2009) Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation. Biosens Bioelectron 24:3365–3371

    Article  PubMed  CAS  Google Scholar 

  125. Barreiros dos Santos M et al (2015) Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria. Bioelectrochemistry 101:146–152

    Article  CAS  PubMed  Google Scholar 

  126. Barreiros dos Santos M et al (2013) Highly sensitive detection of pathogen Escherichia coli O157: H7 by electrochemical impedance spectroscopy. Biosens Bioelectron 45:174–180

    Article  CAS  PubMed  Google Scholar 

  127. Barreiros dos Santos M et al (2019) Portable sensing system based on electrochemical impedance spectroscopy for the simultaneous quantification of free and total microcystin-LR in freshwaters. Biosens Bioelectron 142:111550

    Article  CAS  PubMed  Google Scholar 

  128. Zou Y et al (2021) Anti-fouling peptide functionalization of ultraflexible neural probes for long-term neural activity recordings in the brain. Biosens Bioelectron 192:113477

    Article  CAS  PubMed  Google Scholar 

  129. Leonard P (2003) Advances in biosensors for detection of pathogens in food and water. Enzym Microb Technol 32:3–13

    Article  CAS  Google Scholar 

  130. Hood L, Friend SH (2011) Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 8:184–187

    Article  PubMed  Google Scholar 

  131. Romanholo PVV et al (2021) Biomimetic electrochemical sensors: new horizons and challenges in biosensing applications. Biosens Bioelectron 185:113242

    Article  CAS  PubMed  Google Scholar 

  132. Van Nguyen H et al (2019) Nucleic acid diagnostics on the total integrated lab-on-a-disc for point-of-care testing. Biosens Bioelectron 141:111466

    Article  CAS  PubMed  Google Scholar 

  133. Falk M, Shleev S (2019) Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: towards self-powered systems. Biosens Bioelectron 126:275–291

    Article  CAS  PubMed  Google Scholar 

  134. Kim H et al (2020) Electrical energy harvesting from ferritin biscrolled carbon nanotube yarn. Biosens Bioelectron 164:112318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Scientific and Technological Research Support System (SAICT)—Scientific Research and Technological Development Projects (IC&DT) from the Foundation for Science and Technology (FCT) and the Competitiveness and Internationalization Operational Program under Grant Agreement No. 030881 (POCI-01-0145-FEDER-029547). This work was supported by NANOCULTURE Interreg Atlantic Area project (EAPA_590/2018); ACUINANO Interreg POCTEP project (code 1843); Horizon 2020 project LABPLAS—Land-Based Solutions for Plastics in the Sea (101003954); SbDToolBox- Nanotechnology-based tools and tests for Safe-by-Design nanomaterials (NORTE-01-0145-FEDER-000047) supported by the North Portugal Regional Operational Programme (NORTE2020) under the PORTUGAL 2020 Partnership Agreement through the European Regional Development Fund (ERDF). LR-L acknowledges funding from FCT (Fundação para a Ciência e Technologia) for the Scientific Employment Stimulus Program (2020.04021.CEECIND). We would like to thank Dr. Miguel Spuch-Calvar for preparing the 3D illustrations used in Fig. 1.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marília Barreiros dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barreiros dos Santos, M., Rodriguez-Lorenzo, L., Queirós, R., Espiña, B. (2022). Fundamentals of Biosensors and Detection Methods. In: Caballero, D., Kundu, S.C., Reis, R.L. (eds) Microfluidics and Biosensors in Cancer Research. Advances in Experimental Medicine and Biology, vol 1379. Springer, Cham. https://doi.org/10.1007/978-3-031-04039-9_1

Download citation

Publish with us

Policies and ethics