Skip to main content

Part of the book series: Unmanned System Technologies ((UST))

  • 423 Accesses

Abstract

Unmanned aerial vehicles (UAVs) are being widely used in panoply of scenarios. This includes military applications for reconnaissance and attacks, as well as civilian applications, which range from film making to agriculture. All these use cases require energy-efficient and reliable wireless communications. However, the particularities of the air-to-air (A2A) and air-to-ground (A2G) UAV communications pose a set of challenges regarding the design of the underlying transmission technique, particularly when the UAV acts as a transmitter. This chapter presents a description and an overview of broadband, block-based transmission techniques, being shown that these communication schemes are suitable to tackle most of the UAV communication challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Yan, L. Fu, J. Zhang, J. Wang, A comprehensive survey on UAV communication channel modeling, in IEEE Access, vol. 7 (2019), pp. 107769–107792

    Google Scholar 

  2. Z. Wu, H. Kumar, A. Davari, Performance evaluation of OFDM transmission in UAV wireless communication, in Proceedings of the 37th Southeastern Symposium on System Theory, 2005. (SSST ’05), Tuskegee, AL

    Google Scholar 

  3. L. Cimini, Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun. 33(7), 665–675 (1985)

    Article  Google Scholar 

  4. H. Ochiai, H. Imai, On the distribution of the peak-to-average power ratio in OFDM signals. IEEE Trans. Commun. 49(2), 282–289

    Google Scholar 

  5. T. May, H. Rohling, Reducing the peak-to-average power ratio in OFDM radio transmission systems, in Proceedings of IEEE VTC ’98, Ottawa, 1998

    Google Scholar 

  6. Y. Rahmatallah, S. Mohan, Peak-To-average power ratio reduction in OFDM systems: a survey and taxonomy. IEEE Commun. Surv. Tutor. 15(4), 1567–1592 (fourth quarter, 2013)

    Google Scholar 

  7. D. Falconer, S.L. Ariyavisitakul, A. Benyamin-Seeyar, B. Eidson, Frequency domain equalization for single-carrier broadband wireless systems. IEEE Commun. Mag. 40(4), 58–66 (2002)

    Article  Google Scholar 

  8. N. Benvenuto, R. Dinis, D. Falconer, S. Tomasin, Single carrier modulation with nonlinear frequency domain equalization: an idea whose time has come—again. Proc. IEEE 98(1), 69–96 (2010)

    Article  Google Scholar 

  9. S. Qureshi, Adaptive equalization. Proc. IEEE 73(9), 1349–1387 (1985)

    Article  Google Scholar 

  10. 3rd Generation Partnership Project: technical specification group radio access network; physical layers aspects for evolved UTRA. 3GPP TR 25.814, Sept. 2006

    Google Scholar 

  11. A.A. Zaidi, R. Baldemair, V. Moles-Cases, N. He, K. Werner, A. Cedergren, OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN. IEEE Commun. Stan. Mag. 2(2), 78–83 (2018)

    Article  Google Scholar 

  12. IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. In IEEE Std 802.11-2016

    Google Scholar 

  13. S. Wei, D.L. Goeckel, P.A. Kelly, Convergence of the complex envelope of bandlimited OFDM signals. IEEE Trans. Inf. Theory 56(10), 893–4904 (2010)

    Article  MathSciNet  Google Scholar 

  14. J. Joung, C.K. Ho, S. Sun, Spectral efficiency and energy efficiency of OFDM systems: Impact of power amplifiers and countermeasures. IEEE J. Select. Areas Commun. 32(2), 208–220 (2014)

    Article  Google Scholar 

  15. F. Pancaldi, G.M. Vitetta, R. Kalbasi, N. Al-Dhahir, M. Uysal, H. Mheidat, Single-carrier frequency domain equalization. IEEE Signal Process. Mag. 25(5), 37–56 (2008)

    Article  Google Scholar 

  16. A. Gusmão, R. Dinis, J. Conceição, N. Esteves, Comparison of two modulation choices for broadband wireless communications, in Proceedings of the VTC2000-Spring, Tokyo, Japan, 2000

    Google Scholar 

  17. N. Benvenuto, S. Tomasin, Block iterative DFE for single carrier modulation. Electron. Lett. 38(19), 1144–1145 (2002)

    Article  Google Scholar 

  18. F. Silva, R. Dinis, P. Montezuma, Approaching the matched filter bound with coded OFDM and SC-FDE schemes, in 2011 - MILCOM 2011 Military Communications Conference, Baltimore, MD (2011), pp. 595–599

    Google Scholar 

  19. N. Al-Dhahir, Single-carrier frequency-domain equalization for space-time block-coded transmissions over frequency-selective fading channels. IEEE Commun. Lett. 5(7), 304–306 (2001)

    Article  Google Scholar 

  20. A. Gusmão, R. Dinis, N. Esteves, On frequency-domain equalization and diversity combining for broadband wireless communications. IEEE Commun. Lett. 51(7), 1029–1033 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Guerreiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guerreiro, J., Dinis, R. (2023). Transmission Techniques for UAVs. In: Jayakody, D.N.K., Muthuchidambaranathan, P., Dinis, R., Panic, S. (eds) Integration of Unmanned Aerial Vehicles in Wireless Communication and Networks. Unmanned System Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-03880-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-03880-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-03879-2

  • Online ISBN: 978-3-031-03880-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics