Skip to main content

Pollination in Melastomataceae: A Family-Wide Update on the Little We Know and the Much That Remains to Be Discovered

  • Chapter
  • First Online:
Systematics, Evolution, and Ecology of Melastomataceae

Abstract

Conducting a literature review of the past 31 years, we here present an update of pollinator observations in Melastomataceae following Renner’s seminal work of 1989. The number of species with documented pollinators has more than doubled, to 272 species across 14 of the 18 major tribes. We detected a strong geographic bias, however, with 90% of observations from New World species, despite 35% of Melastomataceae species diversity contained in the Old World. Further, we report that shifts from the common and most widespread pollination strategy (buzz pollination by bees, ca. 95.5% of species) have occurred both in the New and Old World tropics and likely more than 20 times. These include shifts to nectar-foraging vertebrates (2.5%, six tribes), food-body-foraging vertebrates (0.9%, one tribe) and to generalized pollination systems (1.1%, possibly two tribes). Pollinator shifts commonly associate with floral trait changes, including, for instance, reward type, pollen release mechanisms, and corolla shape. We emphasize the need for more pollination biological studies particularly of Old World species and the four hitherto unstudied clades, as well as comparative investigations across tribes and biogeographic regions to understand the extraordinary success of buzz pollination and the drivers of pollinator shifts in the family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacci LF, Michelangeli FA, Goldenberg R (2019) Revisiting the classification of Melastomataceae: implications for habit and fruit evolution. Bot J Linn Soc 109:1–24

    Article  Google Scholar 

  • Bacci LF, Goldenberg R, Michelangeli FA (2021) First reports of vivipary in neotropical Melastomataceae. Int J Plant Sci 182:79–83

    Article  Google Scholar 

  • Barlow SE, Geraldine AW, Carolyn M, Marta B, Iain WF, Emily CM, Alice B, Bruce MP, Philip CS (2017) Distasteful Nectar Deters Floral Robbery, Curr Biol 27(16):2552-2558.e3. https://doi.org/10.1016/j.cub.2017.07.012

  • Bergamo PJ, Streher NS, Traveset A, Wolowski M, Sazima M (2020) Pollination outcomes reveal negative density-dependence coupled with interspecific facilitation among plants. Ecol Lett 23:129–139

    Article  PubMed  Google Scholar 

  • Bochorny T, Bacci L, Dellinger AS, Michelangeli FA, Goldenberg R, Brito V (2021) Connective appendages in Huberia bradeana (Melastomataceae) affect pollen release during buzz pollination. Plant Biol. https://doi.org/10.1111/plb.13244

  • Brito VLG, Sazima M (2012) Tibouchina pulchra (Melastomataceae): reproductive biology of a tree species at two sites of an elevational gradient in the Atlantic rainforest in Brazil. Plant Syst Evol. 298:1271–1279l

    Article  Google Scholar 

  • Brito VLG, Weynans K, Sazima M, Lunau K (2015) Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra. Front Plant Sci 6:362

    PubMed  PubMed Central  Google Scholar 

  • Brito VLG, Fendrich TG, Smidt EC, Varassin IG, Goldenberg R (2016) Shifts from specialised to generalised pollination systems in Miconieae (Melastomataceae) and their relation with anther morphology and seed number. Plant Biol 18:585–593

    Article  CAS  PubMed  Google Scholar 

  • Brito VLG, Rech AR, Ollerton J, Sazima M (2017) Nectar production, reproductive success and the evolution of generalised pollination within a specialised pollen-rewarding plant family: A case study using Miconia theizans. Plant Syst Evol 303:709–718

    Article  Google Scholar 

  • Buchmann SL (1983) Buzz pollination in angiosperms. In: Handbook of experimental pollination biology. Van Nostrand Reinold Co, New York, NY, pp 73–113

    Google Scholar 

  • Buchmann SL, Buchmann MD (1981) Anthecology of Mouriri myrtilloides (Melastomataceae: Memecyleae), an oil flower in Panama. Biotropica 13:7–24

    Article  Google Scholar 

  • Cardinal S, Buchmann SL, Russell AL (2018) The evolution of floral sonication, a pollen foraging behaviour used by bees (Anthophila). Evolution 72:590–600

    Article  PubMed  PubMed Central  Google Scholar 

  • De Luca PA, Vallejo-Marín M (2013) What’s the “buzz” about? The ecology and evolutionary significance of buzz-pollination. Curr Opin Plant Biol 16:429–435

    Article  PubMed  Google Scholar 

  • Dellinger AS (2020) Pollination syndromes in the 21st century – time to connect pollinators, flowers and phylogenies. New Phytol Invited Tansley Rev 228:1193–1213

    Article  Google Scholar 

  • Dellinger AS, Penneys DS, Städler YM, Fragner L, Weckwerth W, Schönenberger J (2014) A specialized bird pollination system with a bellows mechanism for pollen transfer and staminal food body rewards. Curr Biol 24:1615–1619

    Article  CAS  PubMed  Google Scholar 

  • Dellinger AS, Chartier M, Fernández-Fernández D, Penneys DS, Alvear M, Almeda F, Michelangeli FA, Staedler Y, Armbruster WS, Schönenberger J (2019a) Beyond buzz-pollination – departures from an adaptive plateau lead to new pollination syndromes. New Phytol 221:1136–1149

    Article  PubMed  Google Scholar 

  • Dellinger AS, Scheer LM, Artuso S, Fernández-Fernández D, Sornoza F, Penneys DS, Tenhaken R, Dötterl S, Schönenberger J (2019b) Bimodal pollination systems in Andean Melastomataceae involving birds, bats and rodents. Am Nat 194:104–116

    Article  PubMed  Google Scholar 

  • Dellinger AS, Artuso S, Pamperl S, Michelangeli FA, Penneys DS, Fernández-Fernández DM, Alvear M, Almeda F, Armbruster WS, Staedler Y, Schönenberger J (2019c) Floral modularity increases rate of evolution and adaptive success for functionally specialized pollination systems. Commun Biol 2:453

    Article  PubMed  PubMed Central  Google Scholar 

  • Dellinger AS, Pöllabauer L, Loreti M, Czurda J, Schönenberger J (2019d) Testing functional hypotheses on poricidal anther dehiscence and heteranthery in buzz-pollinated flowers. Acta ZooBot Austria 159:197–214

    Google Scholar 

  • Dellinger AS, Pérez-Barrales R, Michelangeli F, Penneys DS, Fernández-Fernández DM, Schönenberger J (2021) Low bee abundance explains pollinator shifts to vertebrates in tropical mountains. New Phytol 231:864–877

    Article  PubMed  Google Scholar 

  • Faegri K (1986) The solanoid flower. Trans Bot Soc Edinburgh 45:51–59

    Article  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Goldenberg R, Penneys DS, Almeda F, Judd WS, Michelangeli FA (2008) Phylogeny of Miconia (Melastomataceae): patterns of stamen diversification in a megadiverse neotropical genus. Int J Plant Sci 169:963–979

    Article  Google Scholar 

  • Guimarães PJF, Michelangeli FA, Sosa K, Gómez JRDS (2019) Systematics of Tibouchina and allies (Melastomataceae: Melastomateae): a new taxonomic classification. Taxon 68:937–1002

    Article  Google Scholar 

  • Hörandl E (2010) The evolution of self-fertility in apomictic plants. Sex Plant Reprod 23:73–86

    Article  PubMed  Google Scholar 

  • Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46:523–549

    Article  Google Scholar 

  • Johnson SD, Burgoyne PM, Harder LD, Dötterl S (2011) Mammal pollinators lured by scent of a parasitic plant. Proc R Soc B. 278:2303–2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judd WS (2007) Revision of Miconia sect. Chaenopleura (Miconieae, Melastomataceae) in the Greater Antilles. Syst Bot Monogr 81:1–235

    Google Scholar 

  • Karuppusamy S (2019) Predatophily – a new pollination mechanism reported in Western Ghats. Kong Res J 6:53–55

    Article  Google Scholar 

  • King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol Evol 4:811–818

    Article  Google Scholar 

  • Konzmann S, Koethe S, Lunau K (2019) Pollen grain morphology is not exclusively responsible for pollen collectability in bumble bees. Sci Rep 9:4705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konzmann S, Hilgendorf F, Niester C, Rech AR, Lunau K (2020) Morphological specialization of heterantherous Rhynchanthera grandiflora (Melastomataceae) accommodates pollinator diversity. Plant Biol 22:583–590

    Article  CAS  PubMed  Google Scholar 

  • Kopper C (2021) Testing pollination syndromes in Melastomataceae. M.S. thesis, University of Vienna, Austria

    Google Scholar 

  • Kriebel R, Zumbado MA (2014) New reports of generalist insect visitation to flowers of species of Miconia (Miconieae: Melastomataceae) and their evolutionary implications. Brittonia 66:396–404

    Article  Google Scholar 

  • Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Cavis CC (2016) The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol:1430–1442

    Google Scholar 

  • Lin CW (2019) Driessenia phasmolacuna (Sonerileae, Melastomataceae), a new species from Batang Ai, Sarawak, Borneo. Taiwania 64:69–73

    Google Scholar 

  • Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–11

    Article  Google Scholar 

  • Mack AL, Wright DD (1996) Notes on occurrence and feeding of birds at Crater Mountain Biological Research station, Papua New Guinea. Emu 96:89–101

    Article  Google Scholar 

  • Maia FR, Varassin IG, Goldenberg R (2016) Apomixis does not affect visitation to flowers of Melastomataceae, but pollen sterility does. Plant Biol 18:132–138

    Article  CAS  PubMed  Google Scholar 

  • Melo LRF, Vasconcelos T, Reginato M, Caetano AP, Brito VLGD (2021) Evolution of stamen dimetrism in Melastomataceae, a large radiation of pollen flowers. Perspect Plant Ecol Evol Syst 48:125589

    Article  Google Scholar 

  • Mesquita-Neto JN, Blüthgen N, Schlindwein C (2018) Flowers with poricidal anthers and their complex interaction networks – Disentangling legitimate pollinators and illegitimate visitors. Funct Ecol 32:2321–2332

    Article  Google Scholar 

  • Michelangeli FA (2021). https://www.youtube.com/watch?v=hwE-ombIhqU

  • Michelangeli FA, Almeda F, Goldenberg R, Penneys DS (2021) A guide to curating New World Melastomataceae collections with a linear generic sequence to world-wide Melastomataceae. https://doi.org/10.20944/preprints202010.0203.v2

  • Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu H, Sakai S, Harrison RD, Itioka T, Hamid AA, Inoue T (1998) Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland Dipterocarp forest. Am J Bot 85:1477–1501

    Article  CAS  PubMed  Google Scholar 

  • Oliveira FDS, Ribeiro MHM, Nunez CV, Albuquerque PMCD (2016) Flowering phenology of Mouriri guianensis (Melastomataceae) and its interaction with the crepuscular bee Megalopta amoena (Halictidae) in the restinga of Lencóis Maranhenses National Park, Brazil. Acta Amazon 46:281–290

    Article  Google Scholar 

  • Oliveira LC, Teixido AL, Trevizan R, Brito VLGD (2020) Bee-mediated selection favors floral sex specialization in a heterantherous species: strategies to solve the pollen dilemma. Plan Theory 9:1685

    Google Scholar 

  • Passos LM, Telles FJ, Goldenberg R, Maia FR (2022) “Pollen Tube Shower” in Bertolonia Raddi (Melastomataceae): a new delayed selfing mechanism in flowers with poricidal anthers. Bot J Linn Soc 198:326–341

    Google Scholar 

  • Penneys DS (2013) Preliminary phylogeny of the Astronieae (Melastomataceae) based on nuclear and plastid DNA sequence data, with comments on the Philippine endemic genus, Astrocalyx. Philipp J Sci 142:159–168

    Google Scholar 

  • Penneys DS, Judd WS (2013) Combined molecular and morphological phylogenetic analyses of the Blakeeae (Melastomataceae). Int J Plant Sci 174(5):802–817

    Article  CAS  Google Scholar 

  • Pereira AC, da Silva JB, Goldenberg R, Melo GAR, Varassin IG (2011) Flower color change accelerated by bee pollination in Tibouchina (Melastomataceae). Flora 206:491–497

    Google Scholar 

  • Reginato M, Michelangeli FA (2016) Diversity and constraints in the floral morphological evolution of Leandra s.str. (Melastomataceae). Ann Bot 118:445–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Reginato M, Vasconcelos TN, Kriebel R, Simões AO (2020) Is dispersal mode a driver of diversification and geographic distribution in the tropical plant family Melastomataceae? Mol Phylogenet Evol 148:106815

    Article  PubMed  Google Scholar 

  • Rego JO, Oliveira R, Jacobi CM, Schindwein C (2018) Constant flower damage caused by a common stingless bee puts survival of a threatened buzz-pollinated species at risk. Apidologie 49:276–285

    Article  Google Scholar 

  • Renner SS (1983) The widespread occurrence of anther destruction by Trigona bees in Melastomataceae. Biotropica 15:257–267

    Article  Google Scholar 

  • Renner SS (1984) Phaenologie, Bluetenbiologie und Rekombinationssyteme einiger zentralamazonischer Melastomataceen. Ph.D. thesis, Univ. Hamburg

    Google Scholar 

  • Renner SS (1989) A survey of reproductive biology in neotropical Melastomataceae and Memecylaceae. Ann Missouri Bot Gard 76:496

    Article  Google Scholar 

  • Revell LJ (2012) phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x

    Article  Google Scholar 

  • Russell AL, Golden RE, Leonard AS, Papaj DR (2016) Bees learn preferences for plant species that offer only pollen as a reward. Behav Ecol 27:731–740

    Article  Google Scholar 

  • Santos APMD, Fracasso CM, Santos MLD, Romero R, Sazima M, Oliveira PE (2012) Reproductive biology and species geographic distribution in the Melastomataceae: a survey based on New World taxa. Ann Bot 110:667–679

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasidharan N, Sujanapal P (2005) The genus Medinilla Gaudich. Ex DC. (Melastomataceae) in peninsular India. Rheedea 15:103–112

    Google Scholar 

  • Sauquet H, Magallón S (2018) Key questions and challenges in angiosperm macroevolution. New Phytol 219:1170–1187

    Article  PubMed  Google Scholar 

  • Scheer LM (2019) Pollination syndromes: floral scent and nectar composition as key factors in Ecuadorian Meriania taxa. M.S. thesis, University of Salzburg, Austria

    Google Scholar 

  • Solís-Montero L, Vallejo-Marín M (2017) Does the morphological fit between flowers and pollinators affect pollen deposition? An experimental test in a buzz-pollinated species with anther dimorphism. Ecol Evol 7:2706–2715

    Google Scholar 

  • Solís-Montero L, Cáceres-García S, Alavez-Rosas D, García-Crisóstomo JF, Vega-Polanco M, Grajales-Conesa J, Cruz-López L (2018) Pollinator preferences for floral volatiles emitted by dimorphic anthers of a buzz-pollinated herb. J Chem Ecol 44:1058–1067

    Article  PubMed  CAS  Google Scholar 

  • Stein BA, Tobe H (1989) Floral nectaries in Melastomataceae and their systematic and evolutionary implications. Ann Missouri Bot Gard 76:519–531

    Article  Google Scholar 

  • Stiles FG, Ayala AV, Girón M (1992) Polinización de las flores de Brachyotum (Melastomataceae) por dos especies de Diglossa (Emberizidae). Caldasia 17:47–54

    Google Scholar 

  • Stone RD, Ghogue J-P, Cheek M (2008) Revised treatment of Memecylon sect. Afzeliana (Melastomataceae: Olisbeoideae), including three new species from Cameroon. Kew Bull 63:227–241

    Article  Google Scholar 

  • Telles FJ, Klunk CL, da Maia FR, de Brito VLG, Varassin IG (2020) Towards a new understanding of the division of labour in heterantherous flowers: the case of Pterolepis glomerata (Melastomataceae). Bot J Linn Soc 1:1–11

    Google Scholar 

  • Timmerman A, Dalsgaard B, Olesen JM, Andersen LH, González AMM (2008) Anolis aeneus (Grenadian Bush Anole), Anolis richardii (Grenadian Tree Anole). Nectarivory/Pollination. Herpetol Rev 39:84–85

    Google Scholar 

  • Ule E (1896) Weiteres zur Blütheneinrichtung von Purpurella cleistopetala und Verwandten. Ber Deutsch Bot Ges 14(169–1):78

    Google Scholar 

  • Vallejo-Marín M (2019) Buzz pollination: studying bee vibrations on flowers. New Phytol 224:1068–1074

    Article  PubMed  Google Scholar 

  • Valverde-Espinoza JM, Chacón-Madrigal E, Alvarado-Rodríguez O, Dellinger AS (in prep) The predictive power of pollination syndromes: passerine-pollination in heterantherous Meriania macrophylla (Benth.) Triana

    Google Scholar 

  • Van der Niet T, Johnson SD (2012) Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol Evol 27:353–361

    Article  PubMed  Google Scholar 

  • Varassin IG, Penneys DS, Michelangeli FA (2008) Comparative anatomy and morphology of nectar- producing Melastomataceae. Ann Bot 102:899–909

    Article  PubMed  PubMed Central  Google Scholar 

  • Velloso MDSC, Brito VLGD, Caetano APS, Romero R (2018) Anther specializations related to the division of labor in Microlicia cordata (Spreng.) Cham. (Melastomataceae). Acta Bot Bras 32:349–358

    Article  Google Scholar 

  • Veranso-Libalah MC, Couvreur TL, Stone RD, Kadereit G (2018) Multiple shifts to open habitats in Melastomateae (Melastomataceae) congruent with the increase of African Neogene climatic aridity. J Biogeogr 45:1420–1431

    Article  Google Scholar 

  • Viana ML, Oliveira EO, Romero R, Caetano APS (2021) The best of both worlds: Apomixis and sexuality co-occur in species of Microlicia, Melastomataceae. Plant Species Biol 36:476–488

    Article  Google Scholar 

  • Vogel S (1978) Evolutionary shifts from reward to deception in pollen flowers. In: Richards AH (ed) The pollination of flowers by insects. Academic Press, London, pp 89–96

    Google Scholar 

  • Vogel S (1997) Remarkable nectaries: structure, ecology, organophyletic perspectives I. Substitutive nectaries. Flora 192:305–333

    Article  Google Scholar 

  • Warner R (1981) Systematics of Central American Monolena (Melastomataceae). Ph.D. thesis, Univ. Minnesota, St. Paul, Minnesota

    Google Scholar 

  • Wester P, Filla M, Lunau K (2016) Floral scent and flower visitors of three green-flowered Costa Rican and Panamanian Blakea species (Melastomataceae) indicate birds rather than rodents as pollinators. Plant Ecol Evol 149:319–328

    Article  Google Scholar 

Download references

Acknowledgments

We thank Darin Penneys, Peter Quakenbush, Fabián Michelangeli, Frank Almeda, Luan Passos and Mauricio Posada for sharing information on Melastomataceae flower visitors with us. We further thank Fabián Michelangeli for clarifying systematic changes in the Melastomataceae species included in our list and Vinicius Brito on discussion of generalization. Finally, we thank the editors for putting together this book on Melastomataceae ecology and evolution! ASD, KK and JS were supported through FWF-grant AP-30669.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes S. Dellinger .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Table S1

Melastomataceae species (272 in total) with documented flower visitors, split into primary pollinator groups, visitor/uncertain pollinator groups and pollen robbers/illegitimate visitors. If detailed pollinator lists were available, we also report species names. We sorted species alphabetically within clades and give continent and country of study as well as the data source. We marked buzzing bee genera (following Cardinal et al. 2018) with an *; please refer to primary data sources for full scientific names of pollinator/visitor species (DOCX 100 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dellinger, A.S., Kopper, C., Kagerl, K., Schönenberger, J. (2022). Pollination in Melastomataceae: A Family-Wide Update on the Little We Know and the Much That Remains to Be Discovered. In: Goldenberg, R., Michelangeli, F.A., Almeda, F. (eds) Systematics, Evolution, and Ecology of Melastomataceae. Springer, Cham. https://doi.org/10.1007/978-3-030-99742-7_26

Download citation

Publish with us

Policies and ethics