Skip to main content

Abstract

Active, intelligent, improved, and smart packaging used for foods and nutraceuticals are presented in this chapter, with emphasis on nanotechnological applications. There are many nanomaterials, including nano-clay, titanium nitride nanoparticle, nano-titanium dioxide, nano zinc oxide, and silver nanoparticle, used in active, intelligent, and smart packaging for functional and smart preservation purposes. Many nanomaterials like carbon nanotubes, nano-magnesium oxide, nano-titanium dioxide, nano-silver, nano-copper oxide, etc. confer good microbial inhibition properties, along with protecting the package contents. Unlike the traditional packaging systems, active, intelligent, and smart packages are purposefully made package systems to inculcate components that have the ability to discharge substances that destroy microorganisms, prevent oxidation, imbue water vapor, and prevent oxygen within the package and its environment. A combination of active formulations such as ethylene removers, absorbers, preservatives, water vapor, and O2 removers, antimicrobial agents, etc., with polymer, makes the package more capable of boosting the keeping quality while preserving the contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma C, Dhiman R, Rokana N, Panwar H. Nanotechnology: an untapped resource for food packaging. Front Microbiol. 2017;8:1735. https://doi.org/10.3389/fmicb.2017.01735.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gokularaman S, Stalin Cruz A, Pragalyaashree MM, Nishadh A. Nanotechnology approach in food packaging—review. J Pharm Sci Res. 2017;9(10):1743–9.

    CAS  Google Scholar 

  3. Primožič M, Knez Ž, Leitgeb M. (Bio) Nanotechnology in food science—food packaging. Nanomaterials. 2021;11:292. https://doi.org/10.3390/nano11020292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ravichandran R. Nanoparticles in drug delivery: potential green nanobiomedicine applications. Int J Nanotechnol Biomed. 2010;1:108–30.

    Google Scholar 

  5. Wahab A, Rahim AA, Hassan S, Egbuna C, Manzoor MF, Okere KJ, Walag AMP. Application of nanotechnology in the packaging of edible materials. In: Egbuna C, Mishra AP, Goyal MR, editors. Preparation of phytopharmaceuticals for the management of disorders. San Diego, CA: Academic; 2021. p. 215–25.

    Chapter  Google Scholar 

  6. Kuswandi B. Nanotechnology in food packaging. Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember; 2016.

    Google Scholar 

  7. Pal M. Nanotechnology: a new approach in food packaging. J Food Microbiol Saf Hyg. 2017;2:2. https://doi.org/10.4172/2476-2059.1000121.

    Article  Google Scholar 

  8. Awuchi CG, Twinomhwezi H, Choudghal S, Khan MG, Yezdani U, Akram MV. Nanotechnology application in food science and nutrition and its safety issues; a review. Adv Biores. 2020;11(6):23–35. https://doi.org/10.15515/abr.0976-4585.11.6.2335.

    Article  Google Scholar 

  9. Tager J. Nanomaterials in food packaging: FSANZ fails consumers gain. Chain Reaction. 2014;122:16–7.

    Google Scholar 

  10. Duncan TV. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci. 2011;363:1–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mihindukulasuriya SDF, Lim LT. Nanotechnology development in food packaging: a review. Trends Food Sci Technol. 2014;40(2014):149–67.

    Article  CAS  Google Scholar 

  12. Montazer M, Harifi T. New approaches and future aspects of antibacterial food packaging: from nanoparticles coating to nanofibers and nanocomposites, with foresight to address the regulatory uncertainty. In: Grumezescu AM, editor. Food package. San Diego, CA: Academic; 2017. p. 533–59.

    Chapter  Google Scholar 

  13. Weiss J, Takhistov P, McClements DJ. Functional materials in food nanotechnology. J Food Sci. 2006;71(9):107–16.

    Article  Google Scholar 

  14. Mercea P. Models for diffusion in polymers. In: Piringer OG, Baner AL, editors. Plastic packaging. 2nd ed. Weinheim: Wiley-VCH GmbH and Co. KGaA; 2008.

    Google Scholar 

  15. Bradley EL, Castle L, Chaudhry Q. Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol. 2011;22:604–10.

    Article  CAS  Google Scholar 

  16. Alfei S, Marengo B, Zuccari G. Nanotechnology application in food packaging: a plethora of opportunities versus pending risks assessment and public concerns. Food Res Int. 2020;137:109664.

    Article  CAS  PubMed  Google Scholar 

  17. Bikiaris DN, Triantafyllidis KS. HDPE/cu-nanofiber nanocomposites with enhanced antibacterial and oxygen barrier properties appropriate for food packaging applications. Mater Lett. 2013;93:1–4. https://doi.org/10.1016/j.matlet.2012.10.128.

    Article  CAS  Google Scholar 

  18. Egbuna C, Parmar VK, Jeevanandam J, Ezzat SM, Patrick-Iwuanyanwu KC, Adetunji CO, Khan J, et al. Toxicity of nanoparticles in biomedical application: nanotoxicology. J Toxicol. 2021;2021:9954443. https://doi.org/10.1155/2021/9954443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cavaliere E, De Cesari S, Landini G, Riccobono E, Pallecchi L, et al. Highly bactericidal ag nanoparticle films obtained by cluster beam deposition. Nanomed Nanotechnol Biol Med. 2015;11:1417–23. https://doi.org/10.1016/j.nano.2015.02.023.

    Article  CAS  Google Scholar 

  20. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S. Evaluation of nanocomposites packaging containing Ag and ZnO on shelflife of fresh orange juice. Innov Food Sci Emerg Technol. 2011;11:742–8. https://doi.org/10.1016/j.ifset.2010.06.003.

    Article  CAS  Google Scholar 

  21. Busolo MA, Fernandez P, Ocio MJ, Lagaron JM. Novel silver based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit Contam. 2010;27:1617–26. https://doi.org/10.1080/19440049.2010.506601.

    Article  CAS  Google Scholar 

  22. Fortunati E, Peltzer M, Armentano I, Jimenez A, Kenny JM. Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nanobiocomposites. J Food Eng. 2013a;118:117–24. https://doi.org/10.1016/j.jfoodeng.2013.03.025.

    Article  CAS  Google Scholar 

  23. Fortunati E, Puglia D, Luzi F, Santulli C, Kenny JM, Torre L. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I. Carbohydr Polym. 2013b;97:825–36. https://doi.org/10.1016/j.carbpol.2013.03.075.

    Article  CAS  PubMed  Google Scholar 

  24. Sadeghnejad A, Aroujalian A, Raisi A, Fazel S. Antibacterial nano silver coating on the surface of polyethylene films using corona discharge. Surf Coat Technol. 2014;245:1–8. https://doi.org/10.1016/j.surfcoat.2014.02.023.

    Article  CAS  Google Scholar 

  25. Fernandez A, Picouet P, Lloret E. Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int J Food Microbiol. 2010;142:222–8. https://doi.org/10.1016/j.ijfoodmicro.2010.07.001.

    Article  CAS  PubMed  Google Scholar 

  26. Smolkova B, El Yamani N, Collins AR, Gutleb AC, Dusinska M. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem Toxicol. 2015;77:64–73. https://doi.org/10.1016/j.fct.2014.12.015.

    Article  CAS  PubMed  Google Scholar 

  27. Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, et al. Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res. 2014;16:2464. https://doi.org/10.1007/s11051-014-2464-5.

    Article  Google Scholar 

  28. Rhim JW, Park HM, Ha CS. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 2013;38:1629–52. https://doi.org/10.1016/j.progpolymsci.2013.05.008.

    Article  CAS  Google Scholar 

  29. Brandelli A, Brum LFW, dos Santos JHZ. Nanostructured bioactive compounds for ecological food packaging. Environ Chem Lett. 2017;15:193–204. https://doi.org/10.1007/s10311-017-0621-7.

    Article  CAS  Google Scholar 

  30. Lopez-Rubio A, Gavara R, Lagaron JM. Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol. 2006;17:567–75. https://doi.org/10.1016/j.tifs.2006.04.012.

    Article  CAS  Google Scholar 

  31. Fernandez A, Cava D, Ocio MJ, Lagaron JM. Perspectives for biocatalysts in food packaging. Trends Food Sci Technol. 2008;19:198–206. https://doi.org/10.1016/j.tifs.2007.12.004.

    Article  CAS  Google Scholar 

  32. Rhim JW, Ng PKW. Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr. 2007;47:411–33. https://doi.org/10.1080/10408390600846366.

    Article  CAS  PubMed  Google Scholar 

  33. Gopinath S, Sugunan S. Enzymes immobilized on montmorillonite K 10: effect of adsorption and grafting on the surface properties and the enzyme activity. Appl Clay Sci. 2007;35:67–75. https://doi.org/10.1016/j.clay.2006.04.007.

    Article  CAS  Google Scholar 

  34. Sharma AL, Singhal R, Kumar A, Rajesh Pande KK, Malhotra BD. Immobilization of glucose oxidase onto electrochemically prepared poly (aniline-co-fluoroaniline) films. J Appl Polym Sci. 2004;91:3999–4006. https://doi.org/10.1002/app.13553.

    Article  CAS  Google Scholar 

  35. Qhobosheane M, Santra S, Zhang P, Tan WH. Biochemically functionalized silica nanoparticles. Analyst. 2001;126:1274–8. https://doi.org/10.1039/b101489g.

    Article  CAS  PubMed  Google Scholar 

  36. Macwan D, Dave PN, Chaturvedi S. A review on nano- TiO2 sol–gel type syntheses and its applications. J Mater Sci. 2011;46:3669–86. https://doi.org/10.1007/s10853-011-5378-y.

    Article  CAS  Google Scholar 

  37. Montazer M, Seifollahzadeh S. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochem Photobiol. 2011;87:877–83. https://doi.org/10.1111/j.1751-1097.2011.00917.x.

    Article  CAS  PubMed  Google Scholar 

  38. Cerrada ML, Serrano C, Sánchez-Chaves M, Fernández-García M, Fernández-Martín F, de Andrés A. Self-sterilized EVOHTiO2 nanocomposites: effect of TiO2 content on biocidal properties. Adv Funct Mater. 2008;18:1949–60. https://doi.org/10.1002/adfm.200701068.

    Article  CAS  Google Scholar 

  39. Maneerat C, Hayata Y. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Int J Food Microbiol. 2006;107:99–103. https://doi.org/10.1016/j.ijfoodmicro.2005.08.018.

    Article  CAS  PubMed  Google Scholar 

  40. Awuchi CG, Ondari EN, Ofoedu CE, Chacha JS, Rasaq WA, Morya S, Okpala COR. Grain processing methods’ effectiveness to eliminate mycotoxins: an overview. Asian J Chem. 2021a;33(10):2267–75. https://doi.org/10.14233/ajchem.2021.23374.

    Article  CAS  Google Scholar 

  41. Awuchi CG, Ondari EN, Ogbonna CU, Upadhyay AK, Baran K, Okpala COR, Korzeniowska M, Guiné RPF. Mycotoxins affecting animals, foods, humans and plants: types, occurrence, toxicities, action mechanisms, prevention and detoxification strategies—a revisit. Foods. 2021b;10:1279. https://doi.org/10.3390/foods10061279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, et al. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. ChemMater. 2005;17:5255–62. https://doi.org/10.1021/cm0505244.

    Article  CAS  Google Scholar 

  43. Sheikh FA, Kanjawal MA, Saran S, Chung WJ, Kim H. Polyurethane nanofibers containing copper nanoparticles as future materials. Appl Surf Sci. 2011;257:3020–6. https://doi.org/10.1016/j.apsusc.2010.10.110.

    Article  CAS  Google Scholar 

  44. Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 2014;25:135101. https://doi.org/10.1088/0957-4484/25/13/135101.

    Article  CAS  PubMed  Google Scholar 

  45. Vermeiren L, Devlieghere F, Debevere J. Effectiveness of some recent antimicrobial packaging concepts. Food Addit Contam. 2002;19:163–71.

    Article  CAS  PubMed  Google Scholar 

  46. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobiol Phytochem Rev. 2000;1:1–21. https://doi.org/10.1016/S1389-5567(00)00002-2.

    Article  CAS  Google Scholar 

  47. Kong H, Song J, Jang J. Photocatalytic antibacterial capabilities of TiO(2)-biocidal polymer nanocomposites synthesized by a surfaceinitiated photopolymerization. Environ Sci Technol. 2010;44:5672–6. https://doi.org/10.1021/es1010779.

    Article  CAS  PubMed  Google Scholar 

  48. Farhoodi M. Nanocomposite materials for food packaging applications: characterization and safety evaluation. Food Eng Rev. 2016;8:35–51. https://doi.org/10.1007/s12393-015-9114-2.

    Article  CAS  Google Scholar 

  49. Robertson JMC, Robertson PKJ, Lawton LA. A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photochem Photobiol. 2005;175:51–6. https://doi.org/10.1016/j.jphotochem.2005.04.033.

    Article  CAS  Google Scholar 

  50. Li Z, Sheng C. Nanosensors for food safety. J Nanosci Nanotechnol. 2014;14:905–12. https://doi.org/10.1166/jnn.2014.8743.

    Article  CAS  PubMed  Google Scholar 

  51. Pramanik PKD, Solanki A, Debnath A, Nayyar A, El-Sappagh S, Kwak K. Advancing modern healthcare with nanotechnology, nanobiosensors, and internet of nanothings: taxonomies, applications, architecture, and challenges. IEEE Access. 2020;8:65230–66.

    Article  Google Scholar 

  52. Wu D, Hou S, Chen J, Sun Y, Ye X, Liu D, Wang Y. Development and characterization of an enzymatic time-temperature indicator (TTI) based on Aspergillus niger lipase. LWT- Food Sci Technol. 2015;60(2):1100–4. https://doi.org/10.1016/j.lwt.2014.10.011.

    Article  CAS  Google Scholar 

  53. Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano Micro Lett. 2020;12:45. ISSN 2311-6706.

    Article  CAS  Google Scholar 

  54. Spielman S. Smart packaging: connecting the physical with the digital. 2021. https://www.foodengineeringmag.com/articles/99310-smart-packaging-connecting-the-physical-with-the-digital. Accessed 4 Oct 2021.

  55. Cammarelle A, Viscecchia R, Bimbo F. Intention to purchase active and intelligent packaging to reduce household food waste: evidence from Italian consumers. Sustainability. 2021;13:4486. https://doi.org/10.3390/su13084486.

    Article  Google Scholar 

  56. Salgado PR, Di Giorgio L, Musso YS, Mauri AN. Recent developments in smart food packaging focused on biobased and biodegradable polymers. Front Sustain Food Syst. 2021;5:630393. https://doi.org/10.3389/fsufs.2021.630393.

    Article  Google Scholar 

  57. Eghbal N, Dumas E, Yarmand MS, Mousavi ME, Oulahal N, Gharsallaoui A. Antimicrobial films based on pectin and sodium caseinate for the release of antifungal natamycin. J Food Process Preserv. 2019;43:e13953. https://doi.org/10.1111/jfpp.13953.

    Article  CAS  Google Scholar 

  58. Ehsani A, Hashemi M, Aminzare M, Raeisi M, Afshari A, Mirza Alizadeh A, et al. Comparative evaluation of edible films impregnated with sage essential oil or lactoperoxidase system: impact on chemical and sensory quality of carp burgers. J Food Process Preserv. 2019;43:e14070. https://doi.org/10.1111/jfpp.14070.

    Article  CAS  Google Scholar 

  59. Bhargava N, Sharanagat VS, Mor RS, Kumar K. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: a review. Trends Food Sci Technol. 2020;105:385–401. https://doi.org/10.1016/j.tifs.2020.09.015.

    Article  CAS  Google Scholar 

  60. Assis RQ, Lopes SM, Costa TMH, Flôres SH, de Rios AO. Active biodegradable cassava starch films incorporated lycopene nanocapsules. Ind Crop Prod. 2017;109:818–27. https://doi.org/10.1016/j.indcrop.2017.09.043.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awuchi, C.G., Dendegh, T.A. (2022). Active, Smart, Intelligent, and Improved Packaging. In: Egbuna, C., Jeevanandam, J., C. Patrick-Iwuanyanwu, K., N. Onyeike, E. (eds) Application of Nanotechnology in Food Science, Processing and Packaging . Springer, Cham. https://doi.org/10.1007/978-3-030-98820-3_12

Download citation

Publish with us

Policies and ethics