Skip to main content

Improve Short-term Electricity Consumption Forecasting Using a GA-Based Weighted Fractional Grey Model

  • Conference paper
  • First Online:
Advances on Intelligent Informatics and Computing (IRICT 2021)

Abstract

This study proposed a weighted fractional grey model (WFGM) based on a genetic algorithm for forecasting annual electricity consumption. WFGM has two parameters that can be used to adjust the order of the summation based on different data sequences and reflect the new information priority. The key issue with the WFGM model is determining two optimum fractional-order values to improve the accuracy of electricity consumption forecasts. The Genetic Algorithm (GA) is used to select the best values for the weighted fractional-order accumulation, which is one of the most important aspects determining the grey model's prediction accuracy. The additional linear parameters of grey models are estimated using the least squares estimation method. Finally, two real data sets of electricity consumption from Malaysia and Thailand are presented to validate the proposed model. Numerical results show that the new proposed prediction model is very efficient and has the best prediction accuracy compared to the models of GM(1,1) and FGM(1,1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fazil, K., Taplamacioglu, M.C., Cam, E., Hardalac, F.: Forecasting electricity consumption: a comparison of regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy Syst. 67, 431–438 (2015). https://doi.org/10.1016/j.ijepes.2014.12.036

    Article  Google Scholar 

  2. Sulaiman, M.H., Mustafa, M.W., Shareef, H., Khalid, S.N.A.: An application of artificial bee colony algorithm with least squares support vector machine for real and reactive power tracing in deregulated power system. Int. J. Electr. Power Energy Syst. 37(1), 67–77 (2012). https://doi.org/10.1016/j.ijepes.2011.12.007

    Article  Google Scholar 

  3. Wang, S., Yu, L., Tang, L., Wang, S.: A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China. Energy 36(11), 6542–6554 (2011). https://doi.org/10.1016/j.energy.2011.09.010

    Article  Google Scholar 

  4. Abdel-Aal, R.E., Garni, A.Z.: Forecasting monthly electric electricity consumption in Eastern Saudi Arabia using univariate time series analysis. Energy 22, 1059–1069 (1997). https://doi.org/10.1016/S0360-5442(97)00032-7

    Article  Google Scholar 

  5. Bianco, V., Manca, O., Nardini, S.: Electricity consumption forecasting in Italy using linear regression models. Energy 34, 1413–1421 (2009). https://doi.org/10.1016/j.energy.2009.06.034

    Article  Google Scholar 

  6. Ekonomou, I.: Greek long-term electricity consumption prediction using artificial neural network. Energy 35, 512–517 (2010). https://doi.org/10.1016/j.energy.2009.10.018

    Article  Google Scholar 

  7. Geem, Z.W., Roper, W.E.: Energy demand estimation of South Korea using artificial neural network. Energy Policy 37, 4049–4054 (2009)

    Article  Google Scholar 

  8. Ceylan, H., Ozturk, H.K.: Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach. Energy Convers Manage. 45, 2525–2537 (2004). https://doi.org/10.1016/j.enconman.2003.11.010

    Article  Google Scholar 

  9. Kavaklioglu, L.: Modeling and prediction of Turkey’s electricity consumption using support vector regression. Appl. Energy, 88, 368–375 (2011). https://doi.org/10.1016/j.enconman.2009.06.016

  10. Zeng, B., Li, C.: Forecasting the natural gas demand in China using a self-adapting intelligent greymodel. Energy 112, 810–825 (2016). https://doi.org/10.1016/j.energy.2016.06.090

    Article  Google Scholar 

  11. Lihua, Z., Suliang, D., Butterworth, J., Ma, X., Dong, B., Liu, A.: Grey forecasting model for active vibration control systems. J. Sound Vib. 322(4–5), 690–706 (2009). https://doi.org/10.1016/j.jsv.2008.11.036

    Article  Google Scholar 

  12. Xiao, X.P., Mao, S.H.: Grey fForecasting and Decision Methods. Science Press, Beijing, China (2013)

    Google Scholar 

  13. Wang, Z.X.: An optimized Nash nonlinear grey Bernoulli model for forecasting the main economic indices of high technology enterprises in China. Comput. Ind. Eng. 64(3), 780–787 (2013). https://doi.org/10.1016/j.cie.2012.12.010

    Article  Google Scholar 

  14. Wu, L., Liu, S., Yang, Y.: A gray model with a time varying weighted generating operator. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 427–433 (2016). https://doi.org/10.1109/TSMC.2015.2426133

    Article  Google Scholar 

  15. Wei, Y., Zhang, Y.: An essential characteristic of the discrete function transformation to increase the smooth degree of data. J. Grey Syst. 19(3), 293–300 (2007)

    Google Scholar 

  16. Zeng, B., Duan, H., Bai, Y., Meng, W.: Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator. Energy 151, 238–249 (2018). https://doi.org/10.1016/j.energy.2018.03.045

    Article  Google Scholar 

  17. Xie, N., Liu, S.: Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model. J. Syst. Eng. Electron. 26(1), 96–102 (2015). https://doi.org/10.1109/JSEE.2015.00013

    Article  Google Scholar 

  18. Ma, X., Liu, Z.: The kernel-based nonlinear multivariate grey model. Appl. Math. Model. 56, 217–238 (2018). https://doi.org/10.1016/j.apm.2017.12.010

    Article  MathSciNet  MATH  Google Scholar 

  19. Mao, S., Gao, G., Xiao, X., Zhu, M.: A novel fractional grey system model and its application. Appl. Math. Model. 40(7–8), 5063–5076 (2016). https://doi.org/10.1016/j.apm.2015.12.014

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, L., Liu, S., Yao, L., Yan, S., Liu, D.: Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 18(7), 1775–1785 (2013). https://doi.org/10.1016/j.cnsns.2012.11.017

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, L.F., Liu, S.F., Yang, Y.J.: Grey double exponential smoothing model and its application on pig price forecasting in China. Appl. Soft Comput. J. 39, 117–123 (2016). https://doi.org/10.1016/j.asoc.2015.09.054

  22. Wu, L.F., Liu, S.F., Yang, Y.J., Ma, L., Liu, H.: Multi-variable weakening buffer operator and its application. Inf. Sci. 339, 98–107 (2016). https://doi.org/10.1016/j.ins.2016.01.002

    Article  Google Scholar 

  23. Gao, M., Mao, S., Yan, X., Wen, J.: Estimation of Chinese CO2 emission based on a discrete fractional accumulation grey model. J. Grey Syst. 27(4), 114–130 (2015). https://doi.org/10.3724/SP.J.1248.2014.017

    Article  Google Scholar 

  24. Mao, S., Gao, M., Xiao, X., Zhu, M.: A novel fractional grey system model and its application. Appl Math Modell. 40, 5063–3076 (2016). https://doi.org/10.1016/j.apm.2015.12.014

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, L., Liu, S., Yao, L., Yan, S., Liu, D.: Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numerical Simul. 18, 1775–1785 (2013). https://doi.org/10.1016/j.cnsns.2012.11.017

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen, Q.Q., Shi, Q., Tang, T.P., Yao, L.Q.: A novel weighted fractional GM(1,1) model and its applications mathematics. Math. Comput. Sci. 6570683, 1–20 (2020). https://doi.org/10.1155/2020/6570683

    Article  MATH  Google Scholar 

  27. Wang, C.H., Hsu, L.C.: Using genetic algorithms grey theory to forecast high technology industrial output. Appl. Math. Comput. 195(1), 256–263 (2008). https://doi.org/10.1016/j.amc.2007.04.080

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Ministry of Higher Education Malaysia and Universiti Teknologi Malaysia for fully supporting and funding this research project through the Fundamental Research Grant Scheme under Grant Vot 5F271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ani Shabri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shabri, A., Samsudin, R., Alromema, W. (2022). Improve Short-term Electricity Consumption Forecasting Using a GA-Based Weighted Fractional Grey Model. In: Saeed, F., Mohammed, F., Ghaleb, F. (eds) Advances on Intelligent Informatics and Computing. IRICT 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-98741-1_6

Download citation

Publish with us

Policies and ethics