Skip to main content

Ensemble Method for Online Sentiment Classification Using Drift Detection-Based Adaptive Window Method

  • Conference paper
  • First Online:
Advances on Intelligent Informatics and Computing (IRICT 2021)

Abstract

Textual data streams have been widely applied in real-world applications where online users’ expressed their opinions for online products. Mining this stream of data is a challenging task for researchers as a result of changes in data distribution, a phenomenon widely known as concept drift. Most of the existing classification methods incorporated drift detection methods that depend on the classification errors. However, these methods are prone to higher false-positive or missed detections rates. Thus, there is a need for more sensitive detection methods that can detect the maximum number of drifts in the data stream to improve classification accuracy. In this paper, we present a drift detection-based adaptive windowing for ensemble classifier, an adaptive unsupervised learning algorithm for sentiment classification, and opinion mining. The proposed algorithm employs four different dissimilarity measures to quantify the magnitude of concept drift in data streams, to improve the classification performance. Series of the experiments were conducted on the real-world datasets and the results demonstrated the efficiency of our proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Recommender Systems The Textbook. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3

  2. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: A survey of classification methods in data streams. In: Data Streams (2007)

    Google Scholar 

  3. Widmer, G.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. (1996). https://doi.org/10.1007/bf00116900

    Article  Google Scholar 

  4. Žliobaitė, I., Pechenizkiy, M., Gama, J.: An overview of concept drift applications. In: Japkowicz, N., Stefanowski, J. (eds.) Big Data Analysis: New Algorithms for a New Society. SBD, vol. 16, pp. 91–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26989-4_4

    Chapter  Google Scholar 

  5. Gama, J., Zliobaite, I., Bifet, A., et al.: A survey on concept drift adaptation. ACM Comput. Surv. 46 (2014)

    Google Scholar 

  6. Sujatha, P., Saradha, S.: A study of data mining concepts and techniques. Int. J. Appl. Eng. Res. (2014)

    Google Scholar 

  7. Pinage, F.A., dos Santos, E.M., da Gama, J.M.P.: Classification systems in dynamic environments: an overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. (2016). https://doi.org/10.1002/widm.1184

    Article  Google Scholar 

  8. Tsymbal, A.: The problem of concept drift: definitions and related work (2004)

    Google Scholar 

  9. Rokach, L., Maimon, O.: The Data Mining and Knowledge Discovery Handbook, pp. 1203–1224. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09823-4

  10. Min, J.K., Hong, J.H., Cho, S.B.: Combining localized fusion and dynamic selection for high-performance SVM. Expert Syst. Appl. (2015). https://doi.org/10.1016/j.eswa.2014.07.028

    Article  Google Scholar 

  11. Sun, Y., Shao, H., Wang, S.: Efficient ensemble classification for multi-label data streams with concept drift. Information (2019). https://doi.org/10.3390/info10050158

    Article  Google Scholar 

  12. Minku, L.L., Yao, X.: DDD: a new ensemble approach for dealing with concept drift. IEEE Trans. Knowl. Data Eng. 24, 619–633 (2012). https://doi.org/10.1109/TKDE.2011.58

    Article  Google Scholar 

  13. Katakis, I., Tsoumakas, G., Vlahavas, I.: Tracking recurring contexts using ensemble classifiers: an application to email filtering. Knowl. Inf. Syst. (2010). https://doi.org/10.1007/s10115-009-0206-2

    Article  MATH  Google Scholar 

  14. Krawczyk, B., Cano, A.: Adaptive ensemble active learning for drifting data stream mining. In: IJCAI International Joint Conference on Artificial Intelligence (2019)

    Google Scholar 

  15. Jȩdrzejowicz, J., Jȩdrzejowicz, P.: GEP-based ensemble classifier with drift-detection. In: Bramer, M., Petridis, M. (eds.) SGAI 2018. LNCS (LNAI), vol. 11311, pp. 121–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04191-5_9

    Chapter  Google Scholar 

  16. Al-Ghossein, M., Murena, P.A., Abdessalem, T., et al.: Adaptive collaborative topic modeling for online recommendation. In: RecSys 2018 - 12th ACM Conference on Recommender Systems, pp 338–346. Association for Computing Machinery, Inc., (2018)

    Google Scholar 

  17. Bifet, A., Frank, E., Holmes, G., Pfahringer, B.: Accurate ensembles for data streams: combining restricted hoeffding trees using stacking. J. Mach. Learn. Res. (2010)

    Google Scholar 

  18. Tomás, C.C., Oliveira, E., Sousa, D., et al.: Proceedings of the 3rd IPLeiria’s international health congress. BMC Health Serv. Res. (2016). https://doi.org/10.1186/s12913-016-1423-5

    Article  Google Scholar 

  19. Zhang, H., Wu, J., Norris, J., et al.: Predictors of preference for caesarean delivery among pregnant women in Beijing. J. Int. Med. Res. (2017). https://doi.org/10.1177/0300060517696217

    Article  Google Scholar 

  20. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classification. Mach. Learn. 106(9–10), 1469–1495 (2017). https://doi.org/10.1007/s10994-017-5642-8

    Article  MathSciNet  Google Scholar 

  21. Arya, M., Choudhary, C.: Improving the efficiency of ensemble classifier adaptive random forest with meta level learning for real-time data streams. In: Bhateja, V., Satapathy, S.C., Zhang, Y.-D., Aradhya, V.N.M. (eds.) ICICC 2019. AISC, vol. 1034, pp. 11–21. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1084-7_2

    Chapter  Google Scholar 

  22. Gemaque, R.N., Costa, A.F.J., Giusti, R., dos Santos, E.M.: An overview of unsupervised drift detection methods. Wiley Interdiscip. Rev. Data Min. Knowl. Discov (2020)

    Google Scholar 

  23. Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 264–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75488-6_27

    Chapter  Google Scholar 

  24. Misra, S., Biswas, D., Saha, S.K., Mazumdar, C.: Applying Fourier inspired windows for concept drift detection in data stream. In: 2020 IEEE Calcutta Conference, CALCON 2020 - Proceedings (2020)

    Google Scholar 

  25. Yu, S., Abraham, Z.: Concept drift detection with hierarchical hypothesis testing. In: Proceedings of the 17th SIAM International Conference on Data Mining, SDM 2017 (2017)

    Google Scholar 

  26. Goldenberg, I., Webb, G.I.: Survey of distance measures for quantifying concept drift and shift in numeric data. Knowl. Inf. Syst. 60(2), 591–615 (2018). https://doi.org/10.1007/s10115-018-1257-z

    Article  Google Scholar 

  27. Costa, F.G.d., Duarte, F.S.L.G., Vallim, R.M.M., Mello, R.F.d.: Multidimensional surrogate stability to detect data stream concept drift. Expert Syst. Appl. 87, 1339–1351 (2017). https://doi.org/10.1016/j.eswa.2017.06.005

  28. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90(3), 317–346 (2012). https://doi.org/10.1007/s10994-012-5320-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. (2006)

    Google Scholar 

  30. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text. In: RecSys 2013 - Proceedings of the 7th ACM Conference on Recommender Systems (2013)

    Google Scholar 

  31. Zhang, Y., Chu, G., Li, P., et al.: Three-layer concept drifting detection in text data streams. Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2017.04.047

    Article  Google Scholar 

  32. Du, L., Song, Q., Jia, X.: Detecting concept drift: an information entropy based method using an adaptive sliding window. Intell. Data Anal. 18, 337–364 (2014). https://doi.org/10.3233/IDA-140645

    Article  Google Scholar 

  33. Barros, R.S.M., Cabral, D.R.L., Gonçalves, P.M., Santos, S.G.T.C.: RDDM: reactive drift detection method. Expert Syst. Appl. (2017). https://doi.org/10.1016/j.eswa.2017.08.023

    Article  Google Scholar 

  34. Sebastião, R., Fernandes, J.M.: Supporting the page-hinkley test with empirical mode decomposition for change detection. In: Kryszkiewicz, M., Appice, A., Ślęzak, D., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2017. LNCS (LNAI), vol. 10352, pp. 492–498. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60438-1_48

    Chapter  Google Scholar 

  35. Kolter, J.Z., Maloof, M.A.: Using additive expert ensembles to cope with concept drift. In: ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning (2005)

    Google Scholar 

  36. Ditzler, G., Polikar, R.: Hellinger distance based drift detection for nonstationary environments. In: IEEE SSCI 2011: Symposium Series on Computational Intelligence - CIDUE 2011: 2011 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idris Rabiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rabiu, I. et al. (2022). Ensemble Method for Online Sentiment Classification Using Drift Detection-Based Adaptive Window Method. In: Saeed, F., Mohammed, F., Ghaleb, F. (eds) Advances on Intelligent Informatics and Computing. IRICT 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-98741-1_11

Download citation

Publish with us

Policies and ethics