Abstract
The two-parameter exponential distribution is widely used for many applications in real life, and the data can include zero observations. The mean, which represents the center of a population, is one of the parameters of interest. Herein, we propose confidence intervals for the mean of a delta two-parameter exponential distribution based on parametric bootstrapping (PB), standard bootstrapping (SB), the generalized confidence interval (GCI), and the method of variance estimates recovery (MOVER). The performances of the proposed confidence intervals were evaluated by using coverage probabilities and average lengths via Monte Carlo simulations. The results indicate that GCI can be recommended for small-to-moderate sample sizes whereas PB is appropriate for large sample sizes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Elgmati, E.A., Gregni, N.B.: Quartile method estimation of two-parameter exponential distribution data with outliers. Int. J. Stat. Probab. 5(5), 12–15 (2016)
Thangjai, W., Niwitpong, S.A.: Confidence intervals for the weighted coefficients of variation of two-parameter exponential distributions. Cogent Math. 4(1), 1315880 (2017)
Casella, G., Berger, R.L.: Statistical inference, 2nd edn. Pacific Grove, Pacific Grove, CA (2002)
Sangnawakij, P., Niwitpong, S.A.: Confidence intervals for coefficients of variation in two-parameter exponential distributions. Commun. Stati. - Simul. Comput. 46(8), 6618–6630 (2017)
Sangnawakij, P., Niwitpong, S.A., Niwitpong, S.: Confidence intervals for the ratio of coefficients of variation in the two-parameter exponential distributions. In: IUKM (2016)
Thangjai, W., Niwitpong, S.A., Niwitpong, S.: Adjusted generalized confidence intervals for the common coefficient of variation of several normal populations. Commun. Stat.-Simul. Comput. 49(1), 194–206 (2020)
Aitchison, J.: On the distribution of a positive random variable having a discrete probability mass at the origin. J. Am. Stat. Assoc. 50(271), 901–908 (1955)
Aitchison, J., Brown, J.A.C.: The lognormal distribution: with special reference to its uses in economics. J. Am. Stat. Assoc. (1963)
Weerahandi, S.: Generalized confidence intervals. J. Am. Stat. Assoc. 88(423), 899–905 (1993)
Anirban, D.: Asymptotic theory of statistics and probability theory of statistics and probability. J. Am. Stat. Assoc.(2008)
Wu, W.H., Hsieh, H.N.: Generalized confidence interval estimation for the mean of delta-lognormal distribution: an application to New Zealand trawl survey data. J. Appl. Stat. 41(7), 1471–1485 (2014)
Li, J., Song, W., Shi, J.: Parametric bootstrap simultaneous confidence intervals for differences of means from several two-parameter exponential distributions. Stat. Probab. Lett. 106, 39–45 (2015)
Roy, A., Mathew, T.: A generalized confidence limit for the reliability function of a two-parameter exponential distribution. J. Stat. Plan. Infer. 128(2), 509–517 (2005)
Donner, A., Zou, G.: Closed-form confidence intervals for functions of the normal mean and standard deviation. Stat. Methods Med. Res. 21(4), 347–359 (2010)
Zou, G.Y., Taleban, J., Huo, C.Y.: Confidence interval estimation for lognormal data with application to health economics. Comput. Stat. Data Anal. 53(11), 3755–3764 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Khooriphan, W., Niwitpong, SA., Niwitpong, S. (2022). Confidence Intervals for Mean of Delta Two-Parameter Exponential Distribution. In: Honda, K., Entani, T., Ubukata, S., Huynh, VN., Inuiguchi, M. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2022. Lecture Notes in Computer Science(), vol 13199. Springer, Cham. https://doi.org/10.1007/978-3-030-98018-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-98018-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98017-7
Online ISBN: 978-3-030-98018-4
eBook Packages: Computer ScienceComputer Science (R0)