Skip to main content

Confidence Intervals for Mean of Delta Two-Parameter Exponential Distribution

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2022)

Abstract

The two-parameter exponential distribution is widely used for many applications in real life, and the data can include zero observations. The mean, which represents the center of a population, is one of the parameters of interest. Herein, we propose confidence intervals for the mean of a delta two-parameter exponential distribution based on parametric bootstrapping (PB), standard bootstrapping (SB), the generalized confidence interval (GCI), and the method of variance estimates recovery (MOVER). The performances of the proposed confidence intervals were evaluated by using coverage probabilities and average lengths via Monte Carlo simulations. The results indicate that GCI can be recommended for small-to-moderate sample sizes whereas PB is appropriate for large sample sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Elgmati, E.A., Gregni, N.B.: Quartile method estimation of two-parameter exponential distribution data with outliers. Int. J. Stat. Probab. 5(5), 12–15 (2016)

    Article  Google Scholar 

  2. Thangjai, W., Niwitpong, S.A.: Confidence intervals for the weighted coefficients of variation of two-parameter exponential distributions. Cogent Math. 4(1), 1315880 (2017)

    Google Scholar 

  3. Casella, G., Berger, R.L.: Statistical inference, 2nd edn. Pacific Grove, Pacific Grove, CA (2002)

    Google Scholar 

  4. Sangnawakij, P., Niwitpong, S.A.: Confidence intervals for coefficients of variation in two-parameter exponential distributions. Commun. Stati. - Simul. Comput. 46(8), 6618–6630 (2017)

    Article  MathSciNet  Google Scholar 

  5. Sangnawakij, P., Niwitpong, S.A., Niwitpong, S.: Confidence intervals for the ratio of coefficients of variation in the two-parameter exponential distributions. In: IUKM (2016)

    Google Scholar 

  6. Thangjai, W., Niwitpong, S.A., Niwitpong, S.: Adjusted generalized confidence intervals for the common coefficient of variation of several normal populations. Commun. Stat.-Simul. Comput. 49(1), 194–206 (2020)

    Article  MathSciNet  Google Scholar 

  7. Aitchison, J.: On the distribution of a positive random variable having a discrete probability mass at the origin. J. Am. Stat. Assoc. 50(271), 901–908 (1955)

    MathSciNet  MATH  Google Scholar 

  8. Aitchison, J., Brown, J.A.C.: The lognormal distribution: with special reference to its uses in economics. J. Am. Stat. Assoc. (1963)

    Google Scholar 

  9. Weerahandi, S.: Generalized confidence intervals. J. Am. Stat. Assoc. 88(423), 899–905 (1993)

    Article  MathSciNet  Google Scholar 

  10. Anirban, D.: Asymptotic theory of statistics and probability theory of statistics and probability. J. Am. Stat. Assoc.(2008)

    Google Scholar 

  11. Wu, W.H., Hsieh, H.N.: Generalized confidence interval estimation for the mean of delta-lognormal distribution: an application to New Zealand trawl survey data. J. Appl. Stat. 41(7), 1471–1485 (2014)

    Article  MathSciNet  Google Scholar 

  12. Li, J., Song, W., Shi, J.: Parametric bootstrap simultaneous confidence intervals for differences of means from several two-parameter exponential distributions. Stat. Probab. Lett. 106, 39–45 (2015)

    Article  MathSciNet  Google Scholar 

  13. Roy, A., Mathew, T.: A generalized confidence limit for the reliability function of a two-parameter exponential distribution. J. Stat. Plan. Infer. 128(2), 509–517 (2005)

    Article  MathSciNet  Google Scholar 

  14. Donner, A., Zou, G.: Closed-form confidence intervals for functions of the normal mean and standard deviation. Stat. Methods Med. Res. 21(4), 347–359 (2010)

    Article  MathSciNet  Google Scholar 

  15. Zou, G.Y., Taleban, J., Huo, C.Y.: Confidence interval estimation for lognormal data with application to health economics. Comput. Stat. Data Anal. 53(11), 3755–3764 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sa-Aat Niwitpong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khooriphan, W., Niwitpong, SA., Niwitpong, S. (2022). Confidence Intervals for Mean of Delta Two-Parameter Exponential Distribution. In: Honda, K., Entani, T., Ubukata, S., Huynh, VN., Inuiguchi, M. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2022. Lecture Notes in Computer Science(), vol 13199. Springer, Cham. https://doi.org/10.1007/978-3-030-98018-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98018-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98017-7

  • Online ISBN: 978-3-030-98018-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics