Skip to main content

Minimization of p-Laplacian via the Finite Element Method in MATLAB

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13127))

Included in the following conference series:

Abstract

Minimization of energy functionals is based on a discretization by the finite element method and optimization by the trust-region method. A key tool to an efficient implementation is a local evaluation of the approximated gradients together with sparsity of the resulting Hessian matrix. Vectorization concepts are explained for the p-Laplace problem in one and two space-dimensions.

C. Matonoha was supported by the long-term strategic development financing of the Institute of Computer Science (RVO:67985807). A. Moskovka announces the support of the Czech Science Foundation (GACR) through the grant 18-03834S and J. Valdman the support by the Czech-Austrian Mobility MSMT Grant: 8J21AT001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anjam, I., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements. Appl. Math. Comput. 267, 252–263 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Barrett, J.W., Liu, J.G.: Finite element approximation of the p-Laplacian. Math. Comput. 61(204), 523–537 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  4. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  5. Drábek P., Milota J.: Methods of Nonlinear Analysis: Applications to Differential Equations, 2nd edn. Birkhauser (2013)

    Google Scholar 

  6. Lukšan, L., et al.: UFO 2017. Interactive System for Universal Functional Optimization. Technical Report V-1252. Prague, ICS AS CR (2017). http://www.cs.cas.cz/luksan/ufo.html

  7. Rahman, T., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements. Appl. Math. Comput. 219, 7151–7158 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Lindqvist, P.: Notes of the p-Laplace Equation (second edition), report 161: of the Department of Mathematics and Statistics. University of Jyvaäskylä, Finland (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexej Moskovka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matonoha, C., Moskovka, A., Valdman, J. (2022). Minimization of p-Laplacian via the Finite Element Method in MATLAB. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2021. Lecture Notes in Computer Science, vol 13127. Springer, Cham. https://doi.org/10.1007/978-3-030-97549-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97549-4_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97548-7

  • Online ISBN: 978-3-030-97549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics