Skip to main content

Future Directions

  • Chapter
  • First Online:
Migraine in Medicine

Abstract

The evolution of knowledge in migraine, as medical condition, is a continuous progression. Among the speculative and cultural horizons that are crossing this huge area of clinical medicine, a particular place is now occupied by the interrelation with head trauma.

Global health has suffered and continues to suffer a devastating impact due to the COVID-19 pandemic and even headache medicine has not been immune. From this tragedy, one possibility has originated and consolidated in these years: tele-healthcare, which is helping and will help in the near future the achievement of migraine disease-control objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucas S, Hoffman JM, Bell KR, Dikmen S. A prospective study of prevalence and characterization of headache following mild traumatic brain injury. Cephalalgia. 2014;34:93–102.

    Article  PubMed  Google Scholar 

  2. Minen MT, Boubour A, Walia H, Barr W. Post-concussive syndrome: a focus on post-traumatic headache and related cognitive, psychiatric, and sleep issues. Curr Neurol Neurosci Rep. 2016;16:100.

    Article  PubMed  Google Scholar 

  3. Uniyal R, Paliwal VK, Tripathi A. Psychiatric comorbidity in new daily persistent headache: a cross-sectional study. Eur J Pain. 2017;21:1031–8.

    Article  CAS  PubMed  Google Scholar 

  4. Lipton RB, Fanning KM, Buse DC, Martin VT, Hohaia LB, Adams AM, Reed ML, Goadsby PJ. Migraine progression in subgroups of migraine based on comorbidities: results of the CaMEO study. Neurology. 2019;93:e2224–36.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Labastida-Ramírez A, Benemei S, Albanese M, et al. European Headache Federation School of Advanced Studies (EHF-SAS). Persistent post-traumatic headache: a migrainous loop or not? The clinical evidence. J Headache Pain. 2020;21:55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chan TLH, Woldeamanuel YW. Exploring naturally occurring clinical subgroups of post-traumatic headache. J Headache Pain. 2020;21:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alhilali LM, Delic J, Fakhran S. Differences in callosal and forniceal diffusion between patients with and without postconcussive migraine. AJNR Am J Neuroradiol. 2017;38:691–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ashina H, Iljazi A, Al-Khazali HM, et al. Efficacy, tolerability, and safety of erenumab for the preventive treatment of persistent post-traumatic headache attributed to mild traumatic brain injury: an open-label study. J Headache Pain. 2020b;21:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ashina M, Tepper S, Brandes JL, et al. Efficacy and safety of erenumab (AMG334) in chronic migraine patients with prior preventive treatment failure: a subgroup analysis of a randomized, double-blind, placebo-controlled study. Cephalalgia. 2018;38:1611–21.

    Article  PubMed  Google Scholar 

  10. Lambru G, Hill B, Murphy M, Tylova I, Andreou AP. A prospective real-world analysis of erenumab in refractory chronic migraine. J Headache Pain. 2020;21:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seifert TD, Evans RW. Posttraumatic headache: a review. Curr Pain Headache Rep. 2010;14:292–8.

    Article  PubMed  Google Scholar 

  12. Nampiaparampil DE. Prevalence of chronic pain after traumatic brain injury: a systematic review. JAMA. 2008;300:711–9.

    Article  CAS  PubMed  Google Scholar 

  13. Mullally WJ. Concussion. Am J Med. 2017;130:885–92.

    Article  PubMed  Google Scholar 

  14. Lucas S. Posttraumatic headache: clinical characterization and management. Curr Pain Headache Rep. 2015;19:48.

    Article  PubMed  Google Scholar 

  15. Headache Classification Committee of the International Headache Society (IHS) The International classification of headache disorders, 3rd edition. Cephalalgia. 2018;38:1–211. The newest headache classification.

    Google Scholar 

  16. Classification and diagnostic criteria for headache disorders, cranial neuralgias, and facial pain. Headache Classification Committee of the International Headache Society. Cephalalgia. 1988;8:1–96.

    Google Scholar 

  17. Management of Concussion/mTBI Working Group. VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J Rehabil Res Dev. 2009;46:CP1–CP68.

    Article  Google Scholar 

  18. Yilmaz T, et al. Risk factors and outcomes associated with post-traumatic headache after mild traumatic brain injury. Emerg Med J. 2017;34:800–5.

    Article  PubMed  Google Scholar 

  19. Baandrup L, Jensen R. Chronic post-traumatic headache—a clinical analysis in relation to the International Headache Classification 2nd edition. Cephalalgia. 2005;25:132–8.

    Article  CAS  PubMed  Google Scholar 

  20. Kjeldgaard D, Forchhammer H, Teasdale T, Jensen RH. Chronic post-traumatic headache after mild head injury: a descriptive study. Cephalalgia. 2014;34:191–200.

    Article  PubMed  Google Scholar 

  21. Stacey A, et al. Natural history of headache five years after traumatic brain injury. J Neurotrauma. 2017;34:1558–64. A prospective, longitudinal study that details the clinical characteristics and risk factors for self-reported headache attributed to moderate to severe TBI.

    Article  PubMed  Google Scholar 

  22. Sufrinko AM, et al. Using acute performance on a comprehensive neurocognitive, vestibular, and ocular motor assessment battery to predict recovery duration after sport-related concussions. Am J Sports Med. 2017;45:1187–94.

    Article  PubMed  Google Scholar 

  23. Seifert T, et al. Comprehensive headache experience in collegiate student-athletes: an initial report from the NCAA Headache Task Force. Headache. 2017;57:877–86.

    Article  PubMed  Google Scholar 

  24. Hoffman JM, et al. Natural history of headache after traumatic brain injury. J Neurotrauma. 2011;28:1719–25.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Alhilali LM, Delic J, Fakhran S. Differences in callosal and forniceal diffusion between patients with and without postconcussive migraine. Am J Neuroradiol. 2017;38:691–5. The first MRI study to investigate changes in white matter integrity between patients with PTH and a migraine-like phenotype and patients with mTBI and either a non-migraine-like phenotype or no headache.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwedt TJ, Chong CD, Peplinski J, Ross K, Berisha V. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure. J Headache Pain. 2017;18:87. This MRI study provides evidence for cortical differences between patients with PTH and patients with migraine.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Defrin R, Gruener H, Schreiber S, Pick CG. Quantitative somatosensory testing of subjects with chronic post-traumatic headache: implications on its mechanisms. Eur J Pain. 2010;14:924–31.

    Article  PubMed  Google Scholar 

  28. Headache Classification Committee of the International Headache Society (IHS) The International classification of headache disorders, 3rd edition. Cephalalgia. 2018;38:1–211.

    Google Scholar 

  29. Voormolen DC, Haagsma JA, Polinder S, Maas AIR, Steyerberg EW, Vuleković P, et al. Post-concussion symptoms in complicated vs. uncomplicated mild traumatic brain injury patients at three and six months post-injury: results from the CENTER-TBI study. J Clin Med Res. 2019;8:1921.

    Google Scholar 

  30. Hoffman JM, Lucas S, Dikmen S, Braden CA, Brown AW, Brunner R, et al. Natural history of headache after traumatic brain injury. J Neurotrauma. 2011;28:1719–25.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jensen OK, Thulstrup AM. Gender differences of post-traumatic headache and other post-commotio symptoms. A follow-up study after a period of 9-12 months. Ugeskr Laeger. 2001;163:5029–33.

    CAS  PubMed  Google Scholar 

  32. Yilmaz T, Roks G, de Koning M, Scheenen M, van der Horn H, Plas G, et al. Risk factors and outcomes associated with post-traumatic headache after mild traumatic brain injury. Emerg Med J. 2017;34:800–5.

    Article  PubMed  Google Scholar 

  33. Levy D, Gruener H, Riabinin M, Feingold Y, Schreiber S, Pick CG, et al. Different clinical phenotypes of persistent post-traumatic headache exhibit distinct sensory profiles. Cephalalgia. 2020;40(7):675–88. https://doi.org/10.1177/0333102419896368.

    Article  PubMed  Google Scholar 

  34. Lucas S, Hoffman JM, Bell KR, Walker W, Dikmen S. Characterization of headache after traumatic brain injury. Cephalalgia. 2012;32:600–6.

    Article  PubMed  Google Scholar 

  35. Defrin R. Chronic post-traumatic headache: clinical findings and possible mechanisms. J Man Manip Ther. 2014;22:36–43.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ofek H, Defrin R. The characteristics of chronic central pain after traumatic brain injury. Pain. 2007;131:330–40.

    Article  PubMed  Google Scholar 

  37. Ashina H, Porreca F, Anderson T, Amin FM, Ashina M, Schytz HW, et al. Post-traumatic headache: epidemiology and pathophysiological insights. Nat Rev Neurol. 2019;15:607–17.

    Article  PubMed  Google Scholar 

  38. Theeler BJ, Flynn FG, Erickson JC. Chronic daily headache in US soldiers after concussion. Headache. 2012;52:732–8.

    Article  PubMed  Google Scholar 

  39. Theeler BJ, Flynn FG, Erickson JC. Headaches after concussion in US soldiers returning from Iraq or Afghanistan. Headache. 2010;50:1262–72.

    Article  PubMed  Google Scholar 

  40. Erickson JC. Treatment outcomes of chronic post-traumatic headaches after mild head trauma in US soldiers: an observational study. Headache. 2011;51:932–44.

    Article  PubMed  Google Scholar 

  41. Stacey A, Lucas S, Dikmen S, Temkin N, Bell KR, Brown A, et al. Natural history of headache five years after traumatic brain injury. J Neurotrauma. 2017;34:1558–64.

    Article  PubMed  Google Scholar 

  42. Obermann M, Nebel K, Schumann C, Holle D, Gizewski ER, Maschke M, et al. Gray matter changes related to chronic posttraumatic headache. Neurology. 2009;73:978–83.

    Article  PubMed  Google Scholar 

  43. Levin HS, Grossman RG. Behavioral sequelae of closed head injury: a quantitative study. Arch Neurol. 1978;35:720–7.

    Article  CAS  PubMed  Google Scholar 

  44. Hughes JR. In: Levin HS, Eisenberg HM, Benton AL, editors. Mild head injury. New York: Oxford University Press; 1989. 288 p., US $39.95. Elsevier; 1990.

    Google Scholar 

  45. Sand T, Zhitniy N, White LR, Stovner LJ. Brainstem auditory-evoked potential habituation and intensity-dependence related to serotonin metabolism in migraine: a longitudinal study. Clin Neurophysiol. 2008;119:1190–200.

    Article  PubMed  Google Scholar 

  46. Pratap-Chand R, Sinniah M, Salem F. Cognitive evoked potential (P300): a metric for cerebral concussion. Acta Neurol Scand. 1988;78:185–9.

    Article  CAS  PubMed  Google Scholar 

  47. Larsen EL, Ashina H, Iljazi A, Al-Khazali HM, Seem K, Ashina M, et al. Acute and preventive pharmacological treatment of post-traumatic headache: a systematic review. J Headache Pain. 2019;20:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Charles JA. Treatment of posttraumatic headache migraine phenotype with erenumab—an observational study. J Concussion. 2019;3:205970021987829. https://doi.org/10.1177/2059700219878292.

    Article  Google Scholar 

  49. Afari N, Harder LH, Madra NJ, et al. PTSD, combat injury, and headache in veterans returning from Iraq/Afghanistan. Headache J Head Face Pain. 2009;49(9):1267–76.

    Article  Google Scholar 

  50. Pietrzak RH, Goldstein RB, Southwick SM, et al. Prevalence and axis I comorbidity of full and partial posttraumatic stress disorder in the United States: results from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. J Anxiety Disord. 2011;25(3):456–65.

    Article  PubMed  Google Scholar 

  51. Rytwinski NK, Scur MD, Feeny NC, et al. The co-occurrence of major depressive disorder among individuals with posttraumatic stress disorder: a meta-analysis. J Trauma Stress. 2013;26(3):299–309.

    Article  PubMed  Google Scholar 

  52. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858. https://doi.org/10.1016/S0140-6736(18)32279-7.

    Article  Google Scholar 

  53. Van Praag DLG, Cnossen MC, Polinder S, et al. Post-traumatic stress disorder after civilian traumatic brain injury: a systematic review and meta-analysis of prevalence rates. J Neurotrauma. 2019;13:1–13.

    Google Scholar 

  54. Post-Traumatic Headache American Migraine Foundation. 2016. https://americanmigrainefoundation.org/resource-library/post-traumatic-headache/.

  55. Tessler J, Horn LJ. Post-traumatic headache. StatPearls. Treasure Island, FL: StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.

    Google Scholar 

  56. Headache Classification Committee of the International Headache Society (IHS) The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38(1):1-211.

    Google Scholar 

  57. Chong CD, Berisha V, Chiang CC, Ross K, Schwedt TJ. Less cortical thickness in patients with persistent post-traumatic headache compared with healthy controls: an MRI study. Headache. 2018;58(1):53–61.

    Article  PubMed  Google Scholar 

  58. Sarmento E, Moreira P, Brito C, Souza J, Jevoux C, Bigal M. Proton spectroscopy in patients with post-traumatic headache attributed to mild head injury. Headache. 2009;49(9):1345–52.

    Article  PubMed  Google Scholar 

  59. Blume HK, Vavilala MS, Jaffe KM, Koepsell TD, Wang J, Temkin N, et al. Headache after pediatric traumatic brain injury: a cohort study. Pediatrics. 2012;129(1):e31–9.

    Article  PubMed  Google Scholar 

  60. Iverson GL, Gardner AJ, Terry DP, Ponsford JL, Sills AK, Broshek DK, et al. Predictors of clinical recovery from concussion: a systematic review. Br J Sports Med. 2017;51(12):941–8.

    Article  PubMed  Google Scholar 

  61. McConnell B, Duffield T, Hall T, Piantino J, Seitz D, Soden D, et al. Post-traumatic headache after pediatric traumatic brain injury: prevalence, risk factors, and association with neurocognitive outcomes. J Child Neurol. 2020;35(1):63–70. An important study of factors associated with headache following pediatric traumatic brain injury.

    Article  PubMed  Google Scholar 

  62. Kuczynski A, Crawford S, Bodell L, Dewey D, Barlow KM. Characteristics of post-traumatic headaches in children following mild traumatic brain injury and their response to treatment: a prospective cohort. Dev Med Child Neurol. 2013;55(7):636–41.

    Article  PubMed  Google Scholar 

  63. Shaw L, Morozova M, Abu-Arafeh I. Chronic post-traumatic headache in children and adolescents: systematic review of prevalence and headache features. Pain Manag. 2018;8(1):57–64.

    Article  PubMed  Google Scholar 

  64. Babcock L, Byczkowski T, Wade SL, Ho M, Mookerjee S, Bazarian JJ. Predicting postconcussion syndrome after mild traumatic brain injury in children and adolescents who present to the emergency department. JAMA Pediatr. 2013;167(2):156–61.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Do TP, Remmers A, Schytz HW, Schankin C, Nelson SE, Obermann M, et al. Red and orange flags for secondary headaches in clinical practice: SNNOOP10 list. Neurology. 2019;92(3):134–44.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Babl FE, Borland ML, Phillips N, Kochar A, Dalton S, McCaskill M, et al. Accuracy of PECARN, CATCH, and CHALICE head injury decision rules in children: a prospective cohort study. Lancet. 2017;389(10087):2393–402.

    Article  PubMed  Google Scholar 

  67. Kuppermann N, Holmes JF, Dayan PS, Hoyle JD Jr, Atabaki SM, Holubkov R, et al. Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374(9696):1160–70.

    Article  PubMed  Google Scholar 

  68. Lorton F, Poullaouec C, Legallais E, Simon-Pimmel J, Chêne MA, Leroy H, et al. Validation of the PECARN clinical decision rule for children with minor head trauma: a French multicenter prospective study. Scand J Trauma Resusc Emerg Med. 2016;24:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ashwal S, Tong KA, Ghosh N, Bartnik-Olson B, Holshouser BA. Application of advanced neuroimaging modalities in pediatric traumatic brain injury. J Child Neurol. 2014;29(12):1704–17.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Eisenberg MA, Meehan WP 3rd, Mannix R. Duration and course of post-concussive symptoms. Pediatrics. 2014;133(6):999–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kacperski J, Arthur T. Management of post-traumatic headaches in children and adolescents. Headache. 2016;56(1):36–48.

    Article  PubMed  Google Scholar 

  72. Szperka CL, VanderPluym J, Orr SL, Oakley CB, Qubty W, Patniyot I, et al. Recommendations on the use of anti-CGRP monoclonal antibodies in children and adolescents. Headache. 2018;58(10):1658–69.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Seeger TA, Orr S, Bodell L, Lockyer L, Rajapakse T, Barlow KM. Occipital nerve blocks for pediatric posttraumatic headache: a case series. J Child Neurol. 2015;30(9):1142–6.

    Article  PubMed  Google Scholar 

  74. Kroon Van Diest AM, Powers SW. Cognitive behavioral therapy for pediatric headache and migraine: why to prescribe and what new research is critical for advancing integrated biobehavioral care. Headache. 2019;59(2):289–97.

    Article  PubMed  Google Scholar 

  75. Irwin SL, Kacperski J, Rastogi RG. Pediatric post-traumatic headache and implications for return to sport: a narrative review. Headache. 2020;60(6):1076–92.

    Article  PubMed  Google Scholar 

  76. Marcel A. Headache Classification Committee of the International Headache Society (IHS) The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. https://doi.org/10.1177/0333102417738202.

    Article  Google Scholar 

  77. Couch JR, Bearss C. Chronic daily headache in the posttrauma syndrome: relation to extent of head injury. Headache. 2001;41(6):559–64. https://doi.org/10.1046/j.1526-4610.2001.041006559.x.

    Article  CAS  PubMed  Google Scholar 

  78. Lahz S, Bryant RA. Incidence of chronic pain following traumatic brain injury. Arch Phys Med Rehabil. 1996;77(9):889–91. https://doi.org/10.1016/s0003-9993(96)90275-0.

    Article  CAS  PubMed  Google Scholar 

  79. Yamaguchi M. Incidence of headache and severity of head injury. Headache. 1992;32(9):427–31. https://doi.org/10.1111/j.1526-4610.1992.hed3209427.x.

    Article  CAS  PubMed  Google Scholar 

  80. Barker-Collo S, Theadom A, Starkey N, Kahan M, Jones K, Feigin V. Factor structure of the Rivermead post-concussion symptoms questionnaire over the first year following mild traumatic brain injury. Brain Inj. 2018;32(4):453–8. https://doi.org/10.1080/02699052.2018.1429659.

    Article  PubMed  Google Scholar 

  81. Hartvigsen J, Boyle E, Cassidy JD, Carroll LJ. Mild traumatic brain injury after motor vehicle collisions: what are the symptoms and who treats them? A population-based 1-year inception cohort study. Arch Phys Med Rehabil. 2014;95(3):S286–94. https://doi.org/10.1016/j.apmr.2013.07.029.

    Article  PubMed  Google Scholar 

  82. Schwedt TJ, Digre K, Tepper SJ, Spare NM, Ailani J, Birlea M, Burish M, Mechtler L, Gottschalk C, Quinn AM, McGillicuddy L, Bance L, Dumkrieger G, Chong CD, Dodick DW. The American registry for migraine research: research methods and baseline data for an initial patient cohort. Headache. 2020;60(2):337–47. https://doi.org/10.1111/head.13688.

    Article  PubMed  Google Scholar 

  83. Kroenke K, Spitzer RL, Williams JBW. The patient health Questionnaire-2: validity of a two-item depression screener. Med Care. 2003;41(11):1284–92. https://doi.org/10.1097/01.MLR.0000093487.78664.3C.

    Article  PubMed  Google Scholar 

  84. Swinson RP. The GAD-7 scale was accurate for diagnosing generalised anxiety disorder. Evid Based Med. 2006;11(6):184. https://doi.org/10.1136/ebm.11.6.184.

    Article  PubMed  Google Scholar 

  85. Seifert T. Post-traumatic headache therapy in the athlete. Curr Pain Headache Rep. 2016;20(6):41. https://doi.org/10.1007/s11916-016-0568-6. Summary article providing a clear overview of potential treatments for headache.

    Article  PubMed  Google Scholar 

  86. Covassin T, Elbin RJ, Harris W, Parker T, Kontos A. The role of age and sex in symptoms, neurocognitive performance, and postural stability in athletes after concussion. Am J Sports Med. 2012;40(6):1303–12.

    Article  PubMed  Google Scholar 

  87. Covassin T, Elbin RJ, Beidler E, LaFevor M, Kontos AP. A review of psychological issues that may be associated with a sport-related concussion in youth and collegiate athletes. Sport Exerc Perform Psychol. 2017;6(3):220–9. Provides evidence concerning the role of psycholgoical conditions in concussion care and recovery.

    Google Scholar 

  88. Ellis M, Krisko C, Selci E, Russell K. Effect of concussion history on symptom burden and recovery following pediatric sports-related concussion. J Neurosurg Pediatr. 2018;21(4):401–8. Provides key information on the association between concussion history and symptom burden in pediatric athletes, providing clinicians with key information to consider in initial evaluation.

    Article  PubMed  Google Scholar 

  89. Bruce JM, Echemendia RJ. Concussion history predicts self-reported symptoms before and following a concussive event. Neurology. 2004;63(8):1516–8.

    Article  PubMed  Google Scholar 

  90. Oyegbile TO, Delasobera BE, Zecavati N. Postconcussive symptoms after single and repeated concussions in 10- to 20-year-olds: a cross-sectional study. J Child Neurol. 2018;33(6):383–8. https://doi.org/10.1177/088307381875943. Pediatric population symptom reports related to single and repeat concussions.

    Article  PubMed  Google Scholar 

  91. Kontos AP, Elbin RJ, Lau B, Simensky S, Freund B, French J, et al. Posttraumatic migraine as a predictor of recovery and cognitive impairment after sport-related concussion. Am J Sports Med. 2013;41(7):1497–504.

    Article  PubMed  Google Scholar 

  92. Mihalik JP, Register-Mihalik J, Kerr ZY, Marshall SW, McCrea MC, Guskiewicz KM. Recovery of posttraumatic migraine characteristics in patients after mild traumatic brain injury. Am J Sports Med. 2013;41(7):1490–6.

    Article  PubMed  Google Scholar 

  93. Finkel AG, Yerry JA, Klaric JS, Ivins BJ, Scher A, Choi YS. Headache in military service members with a history of mild traumatic brain injury: a cohort study of diagnosis and classification. Cephalalgia. 2017;37(6):548–59. One of the only papers to classify post-traumatic headache following mild TBI.

    Article  PubMed  Google Scholar 

  94. Minen MT, Boubour A, Walia H, Barr W. Post-concussive syndrome: a focus on post-traumatic headache and related cognitive, psychiatric, and sleep issues. Curr Neurol Neurosci Rep. 2016;16(11): https://doi.org/10.1007/s11910-016-0697-7. Outlines the complex interplay of post-injury factors with post-traumatic headache.

    Article  Google Scholar 

  95. Packard RC. Treatment of chronic daily posttraumatic headache with divalproex sodium. Headache J Head Face Pain. 2000;40(9):736–9.

    Article  CAS  Google Scholar 

  96. DiTommaso C, Hoffman JM, Lucas S, Dikmen S, Temkin N, Bell KR. Medication usage patterns for headache treatment after mild traumatic brain injury. Headache J Head Face Pain. 2014;54(3):511–9.

    Article  Google Scholar 

  97. Giza CC, Hovda DA. The neurometabolic cascade of concussion. Neurosurgery. 2001;36(3):228–35.

    Google Scholar 

  98. Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75(4):S24–33.

    Article  PubMed  Google Scholar 

  99. Scott BR, Uomoto JM. Impact of pre-existing migraine and other co-morbid or co-occurring conditions on presentation and clinical course following deployment related concussion. Headache. 2020;60(3):526–41.

    Article  PubMed  Google Scholar 

  100. McEvoy H, Borsook D, Holmes S. Clinical features and sex differences in pediatric post-traumatic headache: a retrospective chart review at a Boston area concussion clinic. Cephalagia. 2019;22:333102419896754.

    Google Scholar 

  101. Gatchel RJ, McGeary DD, McGeary CA, Lippe B. Interdisciplinary chronic pain management. Am Psychol. 2014;692:119–30.

    Article  Google Scholar 

  102. McLean SA, Clauw DJ, Abelson JL, Liberzon I. The development of persistent pain and psychological morbidity after motor vehicle collision: integrating the potential role of stress response systems into a biopsychosocial model. Psychosom Med. 2005;67(5):783–90.

    Article  PubMed  Google Scholar 

  103. Murray CB, Zebracki K, Chlan KM, Moss AC, Vogel LC. Medical and psychological factors related to pain in adults with pediatric-onset spinal cord injury: a biopsychosocial model. Spinal Cord. 2017;55(4):405–10.

    Article  CAS  PubMed  Google Scholar 

  104. Weiner BK. Spine update: the biopsychosocial model and spine care. Spine (Phila Pa 1976). 2008;33(2):219–23.

    Article  Google Scholar 

  105. Stumpf A, Schneider G, Ständer S. Psychosomatic and psychiatric disorders and psychologic factors in pruritus. Clin Dermatol. 2018;36(6):704–8.

    Article  PubMed  Google Scholar 

  106. Gagliese L, Gauthier LR, Narain N, Freedman T. Pain, aging and dementia: towards a biopsychosocial model. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87(Pt B):207–15. This study provides an overview and information regarding the utility of the biopsychosocial model.

    Article  PubMed  Google Scholar 

  107. Schotte CKW, Van Den Bossche B, De Doncker D, Claes S, Cosyns P. A biopsychosocial model as a guide for psychoeducation and treatment of depression. Depress Anxiety. 2006;23:312–24.

    Article  PubMed  Google Scholar 

  108. Kent M, Rivers CT, Wrenn G. Goal-directed resilience in training (GRIT): a biopsychosocial model of self-regulation, executive functions, and personal growth (eudaimonia) in evocative contexts of PTSD, obesity, and chronic pain. Behav Sci (Basel). 2015;5(2):264–304.

    Article  Google Scholar 

  109. Wippert PM, Wiebking C. Stress and alterations in the pain matrix: a biopsychosocial perspective on back pain and its prevention and treatment. Int J Environ Res Public Health. 2018;15:4.

    Article  Google Scholar 

  110. Lall MP, Restrepo E. The biopsychosocial model of low back pain and patient-centered outcomes following lumbar fusion. Orthop Nurs. 2017;36(3):213–21.

    Article  PubMed  Google Scholar 

  111. McCrory P, Meeuwisse W, Dvořák J, Aubry M, Bailes J, Broglio S, et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838–47. This paper provides the international consensus for concussion evaluation and management across multiple domains.

    PubMed  Google Scholar 

  112. Ellis MJ, McDonald PJ, Olson A, Koenig J, Russell K. Cervical spine dysfunction following pediatric sports-related head trauma. J Head Trauma Rehabil. 2019;34(2):103–10.

    Article  PubMed  Google Scholar 

  113. Cancelliere C, Mohammed RJ. Brain drain: psychosocial factors influence recovery following mild traumatic brain injury—3 recommendations for clinicians assessing psychosocial factors. J Orthop Sport Phys Ther. 2019;49(11):842–4.

    Article  Google Scholar 

  114. McCarty CA, Zatzick D, Stein E, Wang J, Hilt R, Rivara FP. Collaborative care for adolescents with persistent post concussive symptoms: a randomized trial. Pediatrics. 2016;138:4.

    Article  Google Scholar 

  115. Leddy JJ, Haider MN, Ellis MJ, Mannix R, Darling SR, Freitas MS, et al. Early subthreshold aerobic exercise for sport-related concussion: a randomized clinical trial. JAMA Pediatr. 2019;173(4):319–25. This study is a hallmark and seminal study illustrating the benefit of early/sub-acute aerobic exercise in accelerating concussion recovery among adolescents.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Leddy J, Baker JG, Haider MN, Hinds A, Willer B. A physiological approach to prolonged recovery from sport-related concussion. J Athl Train. 2017;52(3):299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Nordhaug LH, Linde M, Follestad T, et al. Change in headache suffering and predictors of headache after mild traumatic brain injury: a population-based, controlled, longitudinal study with twelve-month follow-up. J Neurotrauma. 2019;36(23):3244–52. https://doi.org/10.1089/neu.2018.6328. Epub ahead of print 2

    Article  PubMed  PubMed Central  Google Scholar 

  118. Holtkamp MD, Grimes J, Ling G. Concussion in the military: an evidence-base review of mTBI in US military personnel focused on posttraumatic headache. Curr Pain Headache Rep. 2016;20(6):37.

    Article  PubMed  Google Scholar 

  119. Benson BW, Meeuwisse WH, Rizos J, Kang J, Burke CJ. A prospective study of concussions among National Hockey League players during regular season games: the NHL-NHLPA Concussion Program. CMAJ. 2011;183(8):905–11. https://doi.org/10.1503/cmaj.092190.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Asplund CA, McKeag DB, Olsen CH. Sport-related concussion: factors associated with prolonged return to play. Clin J Sport Med. 2004;14(6):339–43.

    Article  PubMed  Google Scholar 

  121. Heidari K, Asadollahi S, Jamshidian M, Abrishamchi SN, Nouroozi M. Prediction of neuropsychological outcome after mild traumatic brain injury using clinical parameters, serum S100B protein and findings on computed tomography. Brain Inj. 2015;29(1):33–40.

    Article  PubMed  Google Scholar 

  122. Zemek R, Barrowman N, Freedman SB, Gravel J, Gagnon I, McGahern C, et al. Clinical risk score for persistent postconcussion symptoms among children with acute concussion in the ED. JAMA. 2016;315(10):1014–25. https://doi.org/10.1001/jama.2016.1203.

    Article  CAS  PubMed  Google Scholar 

  123. Merritt VC, Rabinowitz AR, Arnett PA. Injury-related predictors of symptom severity following sports-related concussion. J Clin Exp Neuropsychol. 2015;37(3):265–75. https://doi.org/10.1080/13803395.2015.1004303.

    Article  PubMed  Google Scholar 

  124. Sheedy J, Harvey E, Faux S, Geffen G, Shores EA. Emergency department assessment of mild traumatic brain injury and the prediction of postconcussive symptoms: a 3-month prospective study. J Head Trauma Rehabil. 2009;24(5):333–43. https://doi.org/10.1097/HTR.0b013e3181aea51f.

    Article  PubMed  Google Scholar 

  125. Sjaastad O, Fredriksen T, Bakketeig L. Headache subsequent to whiplash. Curr Pain Headache Rep. 2009;13(1):52–8.

    Article  PubMed  Google Scholar 

  126. Balla J, Karnaghan J. Whiplash headache. Clin Exp Neurol. 1987;23:179–82.

    CAS  PubMed  Google Scholar 

  127. Stiell IG, Wells GA, Vandemheen K, Clement C, Lesiuk H, Laupacis A, et al. The Canadian CT Head Rule for patients with minor head injury. Lancet. 2001;357(9266):1391–6.

    Article  CAS  PubMed  Google Scholar 

  128. Papa L, Stiell IG, Clement CM, Pawlowicz A, Wolfram A, Braga C, et al. Performance of the Canadian CT Head Rule and the New Orleans Criteria for predicting any traumatic intracranial injury on computed tomography in a United States level I trauma center. Acad Emerg Med. 2012;19(1):2–10. https://doi.org/10.1111/j.1553-2712.2011.01247.x.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Unden J, Ingebrigtsen T, Romner B, Scandinavian Neurotrauma Committee. Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update. BMC Med. 2013;11:50. https://doi.org/10.1186/1741-7015-11-50.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Haydel MJ, Preston CA, Mills TJ, Luber S, Blaudeau E, DeBlieux PM. Indications for computed tomography in patients with minor head injury. N Engl J Med. 2000;343(2):100–5. https://doi.org/10.1056/NEJM200007133430204.

    Article  CAS  PubMed  Google Scholar 

  131. Jagoda AS, Bazarian JJ, Bruns JJ Jr, Cantrill SV, Gean AD, Howard PK, et al. Clinical policy: neuroimaging and decision making in adult mild traumatic brain injury in the acute setting. Ann Emerg Med. 2008;52(6):714–48. https://doi.org/10.1016/j.annemergmed.2008.08.021.

    Article  PubMed  Google Scholar 

  132. Papa L, Brophy GM, Welch RD, Lewis LM, Braga CF, Tan CN, et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 2016;73(5):551–60. https://doi.org/10.1001/jamaneurol.2016.0039.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Welch RD, Ayaz SI, Lewis LM, Unden J, Chen JY, Mika VH, et al. Ability of serum glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and S100B to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury. J Neurotrauma. 2016;33(2):203–14. https://doi.org/10.1089/neu.2015.4149.

    Article  PubMed  PubMed Central  Google Scholar 

  134. United States Food and Drug Administration. FDA authorizes marketing of first blood test to aid in the evaluation of concussion in adults. In: FDA news release. 2018. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm596531.htm.

  135. Dean PJ, Sato JR, Vieira G, McNamara A, Sterr A. Multimodal imaging of mild traumatic brain injury and persistent postconcussion syndrome. Brain Behav. 2015;5(1):45–61. https://doi.org/10.1002/brb3.292. This paper provides an overview of techniques that have been used to image mTBI.

    Article  PubMed  Google Scholar 

  136. Wu X, Kirov II, Gonen O, Ge Y, Grossman RI, Lui YW. MR imaging applications in mild traumatic brain injury: an imaging update. Radiology. 2016;279(3):693–707. https://doi.org/10.1148/radiol.16142535.

    Article  PubMed  Google Scholar 

  137. Younis S, Hougaard A, Vestergaard MB, Larsson HBW, Ashina M. Migraine and magnetic resonance spectroscopy: a systematic review. Curr Opin Neurol. 2017;30(3):246–62. https://doi.org/10.1097/WCO.0000000000000436.

    Article  PubMed  Google Scholar 

  138. Chong CD, Schwedt TJ. Research imaging of brain structure and function after concussion. Headache. 2018;58:827–35. https://doi.org/10.1111/head.13269. This paper provides information on the newest imaging techniques being used to investigate mTBI.

    Article  PubMed  Google Scholar 

  139. Schwedt TJ, Chong CD, Peplinski J, Ross K, Berisha V. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure. J Headache Pain. 2017;18(1):87. In this paper, MRI morphometry is used to compare differences between subjects with PPTH and those with migraine.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jensen OK, Justesen T, Nielsen FF, Brixen K. Functional radiographic examination of the cervical spine in patients with post-traumatic headache. Cephalalgia. 2007;10(6):295–303. Overall and segmental motion in the cervical spine using flexion/extension x-rays in patients with PTH are compared to healthy controls and correlated with associated symptoms.

    Article  Google Scholar 

  141. Schwedt TJ, Chong CD. Medication overuse headache: pathophysiological insights from structural and functional brain MRI research. Headache. 2017;57(7):1173–8. https://doi.org/10.1111/head.13037.

    Article  PubMed  Google Scholar 

  142. Russo A, Silvestro M, Tedeschi G, Tessitore A. Physiopathology of migraine: what have we learned from functional imaging? Curr Neurol Neurosci Rep. 2017;17(12):95. https://doi.org/10.1007/s11910-017-0803-5.

    Article  CAS  PubMed  Google Scholar 

  143. Chong CD, Schwedt TJ, Dodick DW. Migraine: what imaging reveals. Curr Neurol Neurosci Rep. 2016;16(7):64. https://doi.org/10.1007/s11910-016-0662-5.

    Article  PubMed  Google Scholar 

  144. Aurora SK, Brin MF. Chronic migraine: an update on physiology, imaging, and the mechanism of action of two available pharmacologic therapies. Headache. 2017;57(1):109–25. https://doi.org/10.1111/head.12999.

    Article  PubMed  Google Scholar 

  145. Ellis MJ, Ryner LN, Sobczyk O, Fierstra J, Mikulis DJ, Fisher JA, et al. Neuroimaging assessment of cerebrovascular reactivity in concussion: current concepts, methodological considerations, and review of the literature. Front Neurol. 2016;7:61. https://doi.org/10.3389/fneur.2016.00061.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Langlois JA, Rutland-Brown W, Thomas KE. The incidence of traumatic brain injury among children in the United States: differences by race. J Head Trauma Rehabil. 2005;20(3):229–38.

    Article  PubMed  Google Scholar 

  147. Barlow KM, Crawford S, Stevenson A, Sandhu SS, Belanger F, Dewey D. Epidemiology of postconcussion syndrome in pediatric mild traumatic brain injury. Pediatrics. 2010;126:e374–81.

    Article  PubMed  Google Scholar 

  148. Guskiewicz KM, Weaver NL, Padua DA, Garrett WE. Epidemiology of concussion in collegiate and high school football players. Am J Sports Med. 2000;28:643–50.

    Article  CAS  PubMed  Google Scholar 

  149. Blume HK. Headaches after concussion in pediatrics: a review. Curr Pain Headahce Rep. 2015;19(9):19–42.

    Google Scholar 

  150. Bramley H, Heverley S, Lewis MM, Kong L, Rivera R, Silvis M. Demographics and treatment of adolescent posttraumatic headache in a regional concussion clinic. Pediatr Neurol. 2015;52(5):493–8.

    Article  PubMed  Google Scholar 

  151. Vincent MB. Controversy over the classification of medication-overuse headache. Curr Pain Headache Rep. 2012;16:80–5.

    Article  PubMed  Google Scholar 

  152. Heyer GL, Idris SA. Does analgesic overuse contribute to chronic post-traumatic headaches in adolescent concussion patients? Pediatr Neurol. 2014;50(5):464–8.

    Article  PubMed  Google Scholar 

  153. Babcock L, Byczkowski T, Wade SL, Ho M, Mookerjee S, Bazarian JJ. Predicting postconcussion syndrome after mild traumatic brain injury in children and adolescents who present to the emergency department. Arch Pediatr Adolesc Med. 2012;167(2):156–61.

    Google Scholar 

  154. Kabbouche MA, O’Brien HL, Hershey AD. OnabotulinumtoxinA in pediatric chronic daily headache. Curr Neurol Neurosci Rep. 2012;12(2):114–7.

    Article  CAS  PubMed  Google Scholar 

  155. Dougherty C, Ailani J. The effect of onabotulinumtoxinA on chronic post-traumatic headaches refractory to standard preventative therapy (P03.223). Neurology. 2012;78(Meeting Abstracts 1):P03.223.

    Google Scholar 

  156. Brown AW, Watanbe TK, Hoffman JM, Bell KR, Lucas S, Dikmen S. Headache after traumatic brain injury: a national survey of clinical practices and treatment approaches. PM R. 2015;7:3–8.

    Article  PubMed  Google Scholar 

  157. Dodick DW, Goadsby PJ, Silberstein SD, et al. Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, doubleblind, placebo-controlled, exploratory phase 2 trial. Lance Neurol. 2014;13:1100–7.

    Article  CAS  Google Scholar 

  158. Ashina H, Porreca F, Anderson T, Mohammad Amin F, Ashina M, Winther Schytz H, et al. Post-traumatic headache: epidemiology and pathophysiological insights. Nat Rev Neurol. 2019;15(10):607–17.

    Article  PubMed  Google Scholar 

  159. Lucas S. Posttraumatic headache: clinical characterization and management. Curr Pain Headache Rep. 2015;19(10):1–9.

    Article  Google Scholar 

  160. Chan S, Kurowski B, Byczkowski T, Timm N. Intravenous migraine therapy in children with posttraumatic headache in the ED. Am J Emerg Med. 2015;33(5):635–9. https://doi.org/10.1016/j.ajem.2015.01.053.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Friedman BW, Babbush K, Irizarry E, White D, John GE. An exploratory study of IV metoclopramide + diphenhydramine for acute post-traumatic headache. Am J Emerg Med. 2018;36(2):285–9. https://doi.org/10.1016/j.ajem.2017.10.034.

    Article  PubMed  Google Scholar 

  162. Ashina H, Iljazi A, Al-Khazali HM, Ashina S, Jensen RH, Amin FM, et al. Persistent post-traumatic headache attributed to mild traumatic brain injury: deep phenotyping and treatment patterns. Cephalalgia. 2020;40(6):554–64. https://doi.org/10.1177/0333102420909865.

    Article  PubMed  Google Scholar 

  163. Lieba-Samal D, Platzer P, Seidel S, et al. Characteristics of acute posttraumatic headache following mild head injury. Cephalalgia. 2011;31:1618–26.

    Article  PubMed  Google Scholar 

  164. Theeler B, Lucas S, Riechers RG 2nd, et al. Post-traumatic headaches in civilians and military personnel: a comparative, clinical review. Headache. 2013;53:881–900.

    Article  PubMed  Google Scholar 

  165. Mathias JL, Alvaro PK. Prevalence of sleep disturbances, disorders, and problems following traumatic brain injury: a meta-analysis. Sleep Med. 2012;13(7):898–905. https://doi.org/10.1016/j.sleep.2012.04.006.

    Article  CAS  PubMed  Google Scholar 

  166. Yilmaz T, Roks G, de Koning M, Scheenen M, van der Horn H, Plas G, Hageman G, Schoonman G, Spikman J, van der Naalt J. Risk factors and outcomes associated with post-traumatic headache after mild traumatic brain injury. Emerg Med J. 2017;34(12):800–5. https://doi.org/10.1136/emermed-2015-205429.

    Article  PubMed  Google Scholar 

  167. Headache Classification Committee of the International Headache Society The international classification of headache disorders (ICHD), 3rd edition. Cephalalgia. 2018;38:1–211.

    Google Scholar 

  168. Haas DC, Lourie H. Trauma-triggered migraine: an explanation for common neurological attacks after mild head injury. Review of the literature. J Neurosurg. 1988;68:181–8.

    Article  CAS  PubMed  Google Scholar 

  169. Ashina H, Iljazi A, Al-Khazali HM, et al. Persistent post-traumatic headache attributed to mild traumatic brain injury: deep phenotyping and treatment patterns. Cephalalgia. 2020;40:554–64.

    Article  PubMed  Google Scholar 

  170. Weiss HD, Stern BJ, Goldberg J. Post-traumatic migraine: chronic migraine precipitated by minor head or neck trauma. Headache. 1991;31:451–6.

    Article  CAS  PubMed  Google Scholar 

  171. Hoffman JM, Lucas S, Dikmen S, et al. Natural history of headache after traumatic brain injury. J Neurotrauma. 2011;28:1719–25.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Lucas S, Hoffman JM, Bell KR, et al. Characterization of headache after traumatic brain injury. Cephalalgia. 2012;32:600–6.

    Article  PubMed  Google Scholar 

  173. Lucas S, Hoffman JM, Bell KR, et al. A prospective study of prevalence and characterization of headache following mild traumatic brain injury. Cephalalgia. 2014;34:93–102.

    Article  PubMed  Google Scholar 

  174. Stacey A, Lucas S, Dikmen S, et al. Natural history of headache five years after traumatic brain injury. J Neurotrauma. 2017;34:1558–64.

    Article  PubMed  Google Scholar 

  175. Schwedt TJ, Chong CD, Peplinski J, et al. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure. J Headache Pain. 2017;18:87.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Chong CD, Peplinski J, Berisha V, et al. Differences in fibertract profiles between patients with migraine and those with persistent post-traumatic headache. Cephalalgia. 2019;39:1121–33.

    Article  PubMed  Google Scholar 

  177. Dumkrieger G, Chong CD, Ross K, et al. Static and dynamic functional connectivity differences between migraine and persistent post-traumatic headache: a resting-state magnetic resonance imaging study. Cephalalgia. 2019;39:1366–81.

    Article  PubMed  Google Scholar 

  178. Schwedt TJ. Structural and functional brain alterations in post-traumatic headache attributed to mild traumatic brain injury: a narrative review. Front Neurol. 2019;10:615.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Defrin R, Riabinin M, Feingold Y, Schreiber S, Pick CG. Deficient pain modulatory systems in patients with mild traumatic brain and chronic post-traumatic headache: implications for its mechanism. J Neurotrauma. 2015;32(1):28–37. https://doi.org/10.1089/neu.2014.3359.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–S15.

    Article  PubMed  Google Scholar 

  181. Guglielmetti M, Serafini G, Amore M, Martelletti P. The relation between persistent post traumatic headache and PTSD: similarities and possible differences. Int J Environ Res Public Health. 2020;17(11):E4024. https://doi.org/10.3390/ijerph17114024.

    Article  PubMed  Google Scholar 

  182. Schwedt TJ, Peplinski J, Garcia-Filion P, Berisha V. Altered speech with migraine attacks: a prospective, longitudinal study of episodic migraine without aura. Cephalalgia. 2019;9(6):722–31. https://doi.org/10.1177/0333102418815505.

    Article  Google Scholar 

  183. Eskridge SL, Macera CA, Galarneau MR, Holbrook TL, Woodruff SI, MacGregor AJ, et al. Injuries from combat explosions in Iraq: injury type, location, and severity. Injury. 2012;43(10):1678–82.

    Article  PubMed  Google Scholar 

  184. Ruff RL, Ruff SS, Wang XF. Headaches among veterans of Operations Iraqi Freedom and Enduring Freedom with mild traumatic brain injury associated with exposures to explosions. J Rehabil Res Dev. 2008;45:941–53.

    Article  PubMed  Google Scholar 

  185. Theeler BJ, Erickson JC. Mild head trauma and chronic headaches in returning US soldiers. Headache. 2009;49(4):529–34.

    Article  PubMed  Google Scholar 

  186. Meier TB, Bellgowan PS, Bergamino M, Ling JM, Mayer AR. Thinner cortex in collegiate football players with, but not without, a self-reported history of concussion. J Neurotrauma. 2016;33(4):330–8.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Sussman D, da Costa L, Chakravarty MM, Pang EW, Taylor MJ, Dunkley BT. Concussion induces focal and widespread neuromorphological changes. Neurosci Lett. 2017;650:52–9.

    Article  CAS  PubMed  Google Scholar 

  188. Tremblay S, De Beaumont L, Henry LC, Boulanger Y, Evans AC, Bourgouin P, et al. Sports concussions and aging: a neuroimaging investigation. Cereb Cortex. 2013;23(5):1159–66. https://doi.org/10.1093/cercor/bhs102.

    Article  PubMed  Google Scholar 

  189. Eierud C, Craddock RC, Fletcher S, Aulakh M, King-Casas B, Kuehl D, LaConte SM. Neuroimaging after mild traumatic brain injury: review and meta-analysis. NeuroImage Clin. 2014;4:283–94.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Howard L, Dumkrieger G, Chong CD, Ross K, Berisha V, Schwedt TJ. Symptoms of autonomic dysfunction among those with persistent posttraumatic headache attributed to mild traumatic brain injury: a comparison to migraine and healthy controls. Headache. 2018;58(9):1397–407.

    Article  PubMed  Google Scholar 

  191. Dumkrieger G, Chong CD, Ross K, Berisha V, Schwedt TJ. Static and dynamic functional connectivity differences between migraine and persistent post-traumatic headache: a resting-state magnetic resonance imaging study. Cephalalgia. 2019;39(11):1366–81. https://doi.org/10.1177/0333102419847728.

    Article  PubMed  Google Scholar 

  192. Skorobogatykh K, van Hoogstraten WS, Degan D, Prischepa A, Savitskaya A, Ileen BM, et al. Functional connectivity studies in migraine: what have we learned? J Headache Pain. 2019;20(1):108. https://doi.org/10.1186/s10194-019-1047-3.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Lu L, Zhang J, Li F, Shang S, Chen H, Yin X, et al. Aberrant static and dynamic functional network connectivity in acute mild traumatic brain injury with cognitive impairment. Clin Neuroradiol. 2021;32(1):205–14.

    Article  PubMed  Google Scholar 

  194. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14(3):140–51. https://doi.org/10.1002/hbm.1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Erhardt EB, Rachakonda S, Bedrick EJ, Allen EA, Adali T, Calhoun VD. Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp. 2011;32(12):2075–95. https://doi.org/10.1002/hbm.21170.

    Article  PubMed  Google Scholar 

  196. Kurca E, Sivak S, Kucera P. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging. Neuroradiology. 2006;48(9):661–9.

    Article  CAS  PubMed  Google Scholar 

  197. Schwedt TJ, et al. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure. J Headache Pain. 2017;18(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Packard RC. Epidemiology and pathogenesis of posttraumatic headache. J Head Trauma Rehabil. 1999;14(1):9–21.

    Article  CAS  PubMed  Google Scholar 

  199. Chen Z, et al. Volume of hypothalamus as a diagnostic biomarker of chronic migraine. Front Neurol. 2019;10:606.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Dumkrieger G, et al. Static and dynamic functional connectivity differences between migraine and persistent post-traumatic headache: a resting-state magnetic resonance imaging study. Cephalalgia. 2019;39(11):1366–81.

    Article  PubMed  Google Scholar 

  201. van der Naalt J, Timmerman ME, de Koning ME, van der Horn HJ, Scheenen ME, Jacobs B, et al. Early predictors of outcome after mild traumatic brain injury (UPFRONT): an observational cohort study. Lancet Neurol. 2017;16(7):532–40.

    Article  PubMed  Google Scholar 

  202. Rasmussen BK, Olesen J. Symptomatic and nonsymptomatic headaches in a general population. Neurology. 1992;42(6):1225–31.

    Article  CAS  PubMed  Google Scholar 

  203. Reuter U, Goadsby PJ, Lanteri-Minet M, Wen S, Hours-Zesiger P, Ferrari MD, et al. Efficacy and tolerability of erenumab in patients with episodic migraine in whom two-to-four previous preventive treatments were unsuccessful: a randomised, double-blind, placebo-controlled, phase 3b study. Lancet. 2018;392(10161):2280–7.

    Article  CAS  PubMed  Google Scholar 

  204. Goadsby PJ, Paemeleire K, Broessner G, Brandes J, Klatt J, Zhang F. Efficacy and safety of Erenumab (AMG334) in episodic migraine patients with prior preventive treatment failure: a subgroup analysis of a randomized, double-blind, placebo-controlled study. Cephalalgia. 2019;39(7):817–26.

    Article  PubMed  Google Scholar 

  205. Ashina M, Tepper S, Brandes JL, Reuter U, Boudreau G, Dolezil D. Efficacy and safety of erenumab (AMG334) in chronic migraine patients with prior preventive treatment failure: a subgroup analysis of a randomized, double-blind, placebo-controlled study. Cephalalgia. 2018;38(10):1611–21.

    Article  PubMed  Google Scholar 

  206. Martelletti P, Schwedt TJ, Lanteri-Minet M, et al. My Migraine Voice survey: a global study of disease burden among individuals with migraine for whom preventive treatments have failed. J Headache Pain. 2018;19(1):115. https://doi.org/10.1186/s10194-018-0946-z.

    Article  PubMed  PubMed Central  Google Scholar 

  207. The Work Foundation. Migraine’s impact on employment in Europe. https://www.lancaster.ac.uk/work-foundation/?wp-content/uploads/2018/04/Society%e2%80%99s-headache-the-socioeconomic-impact-of-migraine.-Work-Foundation.pdf. Accessed Nov 2020.

  208. GBD 2016 Headache Collaborators. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:954–76.

    Article  Google Scholar 

  209. World Health Organisation. Headache disorders. https://www.who.int/news-room/fact-sheets/detail/headache-disorders. Accessed Jan 2021.

  210. World Health Organisation. Rapid assessment of service delivery for NCDs during the COVID-19 pandemic. https://www.who.int/publications/m/item/rapid-assessment-of-service-delivery-for-ncds-during-the-covid-19-pandemic. Accessed Mar 2021.

  211. Bolay H, Ozge A, Uluduz D, et al. Are migraine patients at increased risk for symptomatic coronavirus disease 2019 due to shared comorbidities? Headache. 2020;60(10):2508–21. https://doi.org/10.1111/head.13998.

    Article  PubMed  Google Scholar 

  212. Steiner TJ, Scher AI, Stewart WF, et al. The prevalence and disability burden of adult migraine in England and their relationships to age, gender and ethnicity. Cephalalgia. 2003;23(7):519–27. https://doi.org/10.1046/j.1468-2982.2003.00568.x.

    Article  CAS  PubMed  Google Scholar 

  213. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–90. https://doi.org/10.1001/jamaneurol.2020.1127.

    Article  PubMed  Google Scholar 

  214. Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 2020;26(7):1037–40. https://doi.org/10.1038/s41591-020-0916-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Pinzon RT, Wijaya VO, Buana RB, et al. Neurologic characteristics in coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Front Neurol. 2020;11:565. https://doi.org/10.3389/fneur.2020.00565.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. https://doi.org/10.1136/bmj.m1985.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Angus-Leppan H. Headache: basic trial designs, sample sizes and pitfalls. In: Guiloff RJ, editor. Clinical trials in neurology. London: Springer; 2001. p. 279–90.

    Chapter  Google Scholar 

  218. Al-Hashel JY, Ismail II. Impact of coronavirus disease 2019 (COVID-19) pandemic on patients with migraine: a web-based survey study. J Headache Pain. 2020;21(1):115. https://doi.org/10.1186/s10194-020-01183-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Uygun O, Ertas M, Ekizoglu E, et al. Headache characteristics in COVID-19 pandemic-a survey study. J Headache Pain. 2020;21(1):121. https://doi.org/10.1186/s10194-020-01188-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Membrilla JA, de Lorenzo I, Sastre M, et al. Headache as a cardinal symptom of coronavirus disease 2019: a cross-sectional study. Headache. 2020;60(10):2176–91. https://doi.org/10.1111/head.13967.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Angus-Leppan H, Saatci D, Sutcliffe A, et al. Abdominal migraine. BMJ. 2018;360:k179. https://doi.org/10.1136/bmj.k179.

    Article  PubMed  Google Scholar 

  222. Guiloff RJ, Fruns M. Limb pain in migraine and cluster headache. JNNP. 1988;51(8):1022–31.

    CAS  Google Scholar 

  223. Liu A, Menon S, Colson NJ, et al. Analysis of the MTHFR C677T variant with migraine phenotypes. BMC Res Notes. 2010;3:213. https://doi.org/10.1186/1756-0500-3-213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Patterson V. Neurological telemedicine in the COVID-19 era. Nat Rev Neurol. 2021;17(2):73–4. https://doi.org/10.1038/s41582-020-00438-9.

    Article  CAS  PubMed  Google Scholar 

  225. James HM, Papoutsi C, Wherton J, et al. Spread, scale-up, and sustainability of video consulting in health care: systematic review and synthesis guided by the NASSS framework. J Med Internet Res. 2021;23(1):e23775. https://doi.org/10.2196/23775.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Angus-Leppan H. Migraine: mimics, borderlands and chameleons. Pract Neurol. 2013;13(5):308–18. https://doi.org/10.1136/practneurol-2012-000502.

    Article  PubMed  Google Scholar 

  227. Wakerley BR, Mollan SP, Sinclair AJ. Idiopathic intracranial hypertension: update on diagnosis and management. Clin Med (Lond). 2020;20(4):384–8. https://doi.org/10.7861/clinmed.2020-0232.

    Article  Google Scholar 

  228. Oxford Centre for evidence based medicine. 2011. www.cebm.net/ocebm-levels-of-evidence/. Accessed Nov 2020.

  229. Maassen Van Den Brink A, de Vries T, Danser AHJ. Headache medication and the COVID-19 pandemic. J Headache Pain. 2020;21(1):38. https://doi.org/10.1186/s10194-020-01106-5.

    Article  CAS  Google Scholar 

  230. Tan HS, Frere Z, Krishnamoorthy V, et al. Association of gabapentinoid utilization with postoperative pulmonary complications in gynecologic surgery: a retrospective cohort study. Curr Med Res Opin. 2021;37(5):821–8. https://doi.org/10.1080/03007995.2021.1900092.

    Article  CAS  PubMed  Google Scholar 

  231. Chatterjee S, Carnahan RM, Chen H, et al. Anticholinergic medication use and risk of pneumonia in elderly adults: a nested case-control study. J Am Geriatr Soc. 2016;64(2):394–400. https://doi.org/10.1111/jgs.13932.

    Article  PubMed  Google Scholar 

  232. Savarese G, Benson L, Sundstrom J, et al. Association between renin-angiotensin-aldosterone system inhibitor use and COVID-19 hospitalization and death: a 1.4 million patient nationwide registry analysis. Eur J Heart Fail. 2021;23(3):476–85. https://doi.org/10.1002/ejhf.2060.

    Article  CAS  PubMed  Google Scholar 

  233. Negro A, Delaruelle Z, Ivanova TA, et al. Headache and pregnancy: a systematic review. J Headache Pain. 2017;18(1):106. https://doi.org/10.1186/s10194-017-0816-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lupi C, Negro A, Gambassi E, et al. Medicines for headache before and during pregnancy: a retrospective cohort study (ATENA study). Neurol Sci. 2020;42(5):1895–921. https://doi.org/10.1007/s10072-020-04702-0.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Naasani I. COMPARE analysis, a bioinformatic approach to accelerate drug repurposing against Covid-19 and other emerging epidemics. SLAS Discov. 2021;26(3):345–51. https://doi.org/10.1177/2472555220975672.

    Article  CAS  PubMed  Google Scholar 

  236. Krishnamurthy S, Lockey RF, Kolliputi N. Soluble ACE2 as a potential therapy for COVID-19. Am J Physiol Cell Physiol. 2021;320(3):C279–81. https://doi.org/10.1152/ajpcell.00478.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–9. https://doi.org/10.1038/nm1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kandasamy M. Perspectives for the use of therapeutic Botulinum toxin as a multifaceted candidate drug to attenuate COVID-19. Med Drug Discov. 2020;6:100042. https://doi.org/10.1016/j.medidd.2020.100042.

    Article  PubMed  PubMed Central  Google Scholar 

  239. World Health Organisation. WHO living guideline: drugs to prevent COVID-19 [January 2021].

    Google Scholar 

  240. Gelfand AA, Poland G. Migraine treatment and COVID-19 vaccines: no cause for concern. Headache. 2021;61(3):409–11. https://doi.org/10.1111/head.14086.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Caronna E, Ballve A, Llaurado A, et al. Headache: a striking prodromal and persistent symptom, predictive of COVID-19 clinical evolution. Cephalalgia. 2020;40(13):1410–21. https://doi.org/10.1177/0333102420965157.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Res Sq. 2021. https://doi.org/10.21203/rs.3.rs-266574/v1

  243. Rozen TD. Daily persistent headache after a viral illness during a worldwide pandemic may not be a new occurrence: lessons from the 1890 Russian/Asiatic flu. Cephalalgia. 2020;40(13):1406–9. https://doi.org/10.1177/0333102420965132.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Ravindran MK, Zheng Y, Timbol C, et al. Migraine headaches in chronic fatigue syndrome (CFS): comparison of two prospective cross-sectional studies. BMC Neurol. 2011;11:30. https://doi.org/10.1186/1471-2377-11-30.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Centers for Disease Control and Prevention. 2020. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html. Accessed 17 June 2020.

  246. Bolay H, Gül A, Baykan B. COVID-19 is a real headache! Headache. 2020;60(7):1415–21. https://doi.org/10.1111/head.13856.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Carlsson AM. Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain. 1983;16(1):87–101. https://doi.org/10.1016/0304-3959(83)90088-X.

    Article  PubMed  Google Scholar 

  248. Magdy R, Hussein M, Ragaie C, Abdel-Hamid HM, Khallaf A, Rizk HI, Dahshan A. Characteristics of headache attributed to COVID-19 infection and predictors of its frequency and intensity: a cross sectional study. Cephalalgia. 2020;40(13):1422–31. https://doi.org/10.1177/0333102420965140.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Coronavirus updates. Last updated: September 13, 2020, 06:12 GMT. 2020. https://www.worldometers.info/coronavirus/.

  250. Verhagen IE, van Casteren DS, de Vries LS, et al. Effect of lockdown during COVID-19 on migraine: a longitudinal cohort study. Cephalagia. 2021;41(7):865–70. https://doi.org/10.1177/0333102420981739.

    Article  Google Scholar 

  251. Delussi M, Gentile E, Coppola G, et al. Investigating the effects of COVID-19 quarantine in migraine: an observational cross-sectional study from the Italian National Headache Registry (RICe). Front Neurol. 2020;11:597881. https://doi.org/10.3389/fneur.2020.597881.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Trigo J, et al. Factors associated with the presence of headache in hospitalized COVID-19 patients and impact on prognosis: a retrospective cohort study. J. Headache Pain. 2020;21(1):94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Poncet-Megemont L, et al. High prevalence of headaches during Covid-19 infection: a retrospective cohort study. Headache. 2020;60(10):2578–82.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Lechien JR, et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J Int Med. 2020;288(3):335–44.

    Article  CAS  Google Scholar 

  255. Guan W-j, et al. Clinical characteristics of coronavirus disease 2019 in China. New Engl J Med. 2020;382(18):1708–20.

    Article  CAS  PubMed  Google Scholar 

  256. Centers for Disease Control and Prevention. COVID-19 laboratory-confirmed hospitalizations, preliminary data as of Aug 29, 2020. https://gis.cdc.gov/grasp/COVIDNet/COVID19_5.html.

  257. Trigo J, et al. Phenotypic characterization of acute headache attributed to SARS-CoV-2: an ICHD-3 validation study on 106 hospitalized patients. Cephalalgia. 2020;40(13):1432–42.

    Article  Google Scholar 

  258. Porta-Etessam J, et al. Spectrum of headaches associated with SARS-CoV-2 infection: study of healthcare professionals. Headache. 2020;60(8):1697–704.

    Article  PubMed  PubMed Central  Google Scholar 

  259. García-Azorín D, et al. Frequency and type of red flags in patients with Covid-19 and headache: series of 104 hospitalized patients. Headache. 2020;60(8):1664–72.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Gonzalez-Martinez A, et al. Headache during SARS-CoV-2 infection as an early symptom associated with a more benign course of disease: a case-control study. Eur J Neurol. 2021;28(10):3426–36. https://doi.org/10.1111/ene.14718.

    Article  PubMed  Google Scholar 

  261. Xu H, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. https://doi.org/10.1038/s41368-020-0074-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Marinis MD, Welch KM. Headache associated with non-cephalic infections: classification and mechanisms. Cephalalgia. 1992;12(4):197–201. https://doi.org/10.1046/j.1468-2982.1992.1204197.x.

    Article  PubMed  Google Scholar 

  263. Borges do Nascimento IJ, Cacic N, Abdulazeem HM, et al. Novel coronavirus infection (COVID-19) in humans: a scoping review and meta-analysis. J Clin Med. 2020;9(4):941.

    Article  PubMed Central  CAS  Google Scholar 

  264. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Zhang X, Cai H, Hu J, et al. Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. Int J Infect Dis. 2020;94:81–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Kaur N, Gupta I, Singh H, et al. Epidemiological and clinical characteristics of 6635 COVID-19 patients: a pooled analysis. SN Compr Clin Med. 2020;9:1–5.

    Google Scholar 

  267. Toptan T, Aktan C, Basari A, Bolay H. Case series of headache characteristics in COVID-19; headache can be an isolated symptom. Headache. 2020;60:1788–92.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Arca KN, Starling AJ. Treatment-refractory headache in the setting of COVID 19 pneumonia: migraine or meningoencephalitis? Case report. SN Compr Clin Med. 2020;2(8):1200–3. https://doi.org/10.1007/s42399-020-00369-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. De Boer I, Van Den Maagdenberg AMJM, Terwindt GM. Advance in genetics of migraine. Curr Opin Neurol. 2019;32:413–21. https://doi.org/10.1097/WCO.0000000000000687.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Parodi IC, Poeta MG, Assini A, Schirinzi E, Del Sette P. Impact of quarantine due to COVID infection on migraine: a survey in Genova, Italy. Neurol Sci. 2020;41(8):2025–7. https://doi.org/10.1007/s10072-020-04543-x.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Dallavalle G, Pezzotti E, Provenzi L, Toni F, Carpani A, Borgatti R. Migraine symptoms improvement during the COVID-19 lockdown in a cohort of children and adolescents. Front Neurol. 2020;11:579047. https://doi.org/10.3389/fneur.2020.579047.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Gentile E, Delussi M, Abagnale C, et al. Brain sciences migraine during COVID-19: data from second wave pandemic in an Italian cohort. Brain Sci. 2021;11(4):482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Altamura C, Cevoli S, Aurilia C, Egeo G, Fofi L, Torelli P, Brunelli N, Pierangeli G, Favoni V, Fallacara A, Pensato U, Barbanti P, Vernieri F. Locking down the CGRP pathway during the COVID-19 pandemic lockdown: the PandeMig study. Neurol Sci. 2020;41(12):3385–9. https://doi.org/10.1007/s10072-020-04767-x.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Smith M, Nakamoto M, Crocker J, et al. Early impact of the COVID-19 pandemic on outpatient migraine care in Hawaii: results of a quality improvement survey. Headache. 2021;61(1):149–56. https://doi.org/10.1111/head.14030.

    Article  PubMed  Google Scholar 

  275. Di Stefano V, Ornello R, Gagliardo A, et al. Social distancing in chronic migraine during the covid-19 outbreak: results from a multicenter observational study. Nutrients. 2021;13:1–13. https://doi.org/10.3390/nu13041361.

    Article  CAS  Google Scholar 

  276. Niazkar HR, Zibaee B, Nasimi A, Bahri N. The neurological manifestations of COVID-19: a review article. Neurol Sci. 2020;41(7):1667–71. https://doi.org/10.1007/s10072-020-04486-3.

    Article  PubMed  PubMed Central  Google Scholar 

  277. Abboud H, Abboud FZ, Kharbouch H, Arkha Y, El Abbadi N, El Ouahabi A. COVID-19 and SARS-Cov-2 infection: pathophysiology and clinical effects on the nervous system. World Neurosurg. 2020;140:49–53. https://doi.org/10.1016/j.wneu.2020.05.193.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Islam MA, Alam SS, Kundu S, Hossan T, Kamal MA, Cavestro C. Prevalence of headache in patients with coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis of 14,275 patients. Front Neurol. 2020;11:562634. https://doi.org/10.3389/fneur.2020.562634.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Silva MTT, Lima MA, Torezani G, Soares CN, Dantas C, Brandão CO, Espíndola O, Siqueira MM, Araujo AQ. Isolated intracranial hypertension associated with COVID-19. Cephalalgia. 2020;40(13):1452–8. https://doi.org/10.1177/0333102420965963.

    Article  PubMed  PubMed Central  Google Scholar 

  280. https://www.who.int/emergencies/diseases/novel-coronavirus-2019

  281. Hou CC, Lin H, Chang CP, Huang WT, Lin MT. Oxidative stress and pyrogenic fever pathogenesis. Eur J Pharmacol. 2011;667(1–3):6–12. https://doi.org/10.1016/j.ejphar.2011.05.075.

    Article  CAS  PubMed  Google Scholar 

  282. Toklu H, Ganti L, Crimi E, Cintron C, Hagan J, Serrano E. Cerebrospinal fluid findings and hypernatremia in COVID-19 patients with altered mental status. Int J Emerg Med. 2020;13(1):63. https://doi.org/10.1186/s12245-020-00327-4.

    Article  PubMed  PubMed Central  Google Scholar 

  283. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–44. https://doi.org/10.1038/s41564-020-0695-z.

    Article  CAS  Google Scholar 

  284. Holsey ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK, Washington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–36. https://doi.org/10.1056/NEJMoa2001191.

    Article  Google Scholar 

  285. Wang FS, Zhang C. What to do next to control the 2019-nCoV epidemic? Lancet. 2020;395(10222):391–3. https://doi.org/10.1016/S0140-6736(20)30300-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Chan KW, Wong VT, Tang SCW. COVID-19: an update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative Chinese-Western medicine for the management of 2019 novel coronavirus disease. Am J Chin Med. 2020;48(3):737–62. https://doi.org/10.1142/S0192415X20500378.

    Article  CAS  PubMed  Google Scholar 

  287. Mahase E. Covid-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ. 2020;368:m1036.

    Article  PubMed  Google Scholar 

  288. Bhaskar S, Bradley S, Israeli-Korn S, Menon B, Chattu VK, Thomas P, Chawla J, Kumar R, Prandi P, Ray D, Golla S, Surya N, Yang H, Martinez S, Ozgen MH, Codrington J, González EMJ, Toosi M, Hariya Mohan N, Menon KV, Chahidi A, Mederer Hengstl S. Chronic neurology in COVID-19 era: clinical considerations and recommendations from the REPROGRAM consortium. Front Neurol. 2020;11:664. https://doi.org/10.3389/fneur.2020.00664.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Kang YK, Guo WJ, Xu H, Chen YH, Li XJ, Tan ZP, Li N, Gesang ZR, Wang YM, Liu CB, Luo Y, Feng J, Xu QJ, Lee S, Li T. The 6-item Kessler psychological distress scale to survey serious mental illness among Chinese undergraduates: psychometric properties and prevalence estimate. Compr Psychiatry. 2015;63:105–12. https://doi.org/10.1016/j.comppsych.2015.08.011.

    Article  PubMed  Google Scholar 

  290. Bendtsen L, Munksgaard S, Tassorelli C, Nappi G, Katsarava Z, Lainez M, Leston JA, Fadic R, Spadafora S, Stoppini A, Jensen R, the COMOESTAS Consortium. Disability, anxiety and depression associated with medication-overuse headache can be considerably reduced by detoxification and prophylactic treatment. Results from a multicentre, multinational study (COMOESTAS project). Cephalalgia. 2014;34(6):426–33. https://doi.org/10.1177/0333102413515338.

    Article  CAS  PubMed  Google Scholar 

  291. Bottiroli S, Allena M, Sances G, de Icco R, Avenali M, Fadic R, Katsarava Z, MJA L, Goicochea MT, Bendtsen L, Jensen RH, Nappi G, Tassorelli C, the COMOESTAS Consortium. Psychological, clinical, and therapeutic predictors of the outcome of detoxification in a large clinical population of medication-overuse headache: a six-month follow-up of the COMOESTAS project. Cephalalgia. 2019;39(1):135–47. https://doi.org/10.1177/0333102418783317.

    Article  PubMed  Google Scholar 

  292. Carlsen LN, Munksgaard SB, Nielsen M, Engelstoft IMS, Westergaard ML, Bendtsen L, Jensen RH. Comparison of 3 treatment strategies for medication overuse headache: a randomized clinical trial. JAMA Neurol. 2020;77(9):1069–78. https://doi.org/10.1001/jamaneurol.2020.1179.

    Article  PubMed  Google Scholar 

  293. Dong Z, Chen X, Steiner TJ, Hou L, Di H, He M, Dai W, Pan M, Zhang M, Liu R, Yu S. Medication-overuse headache in China: clinical profile, and an evaluation of the ICHD-3 beta diagnostic criteria. Cephalalgia. 2015;35(8):644–51. https://doi.org/10.1177/0333102414552533.

    Article  PubMed  Google Scholar 

  294. Tassorelli C, Jensen R, Allena M, de Icco R, Katsarava Z, Miguel Lainez J, Leston JA, Fadic R, Spadafora S, Pagani M, Nappi G, the COMOESTAS Consortium. The added value of an electronic monitoring and alerting system in the management of medication-overuse headache: a controlled multicentre study. Cephalalgia. 2017;37(12):1115–25. https://doi.org/10.1177/0333102416660549.

    Article  PubMed  Google Scholar 

  295. Diener HC, Antonaci F, Braschinsky M, Evers S, Jensen R, Lainez M, Kristoffersen ES, Tassorelli C, Ryliskiene K, Petersen JA. European academy of neurology guideline on the management of medication-overuse headache. Eur J Neurol. 2020;27(7):1102–16. https://doi.org/10.1111/ene.14268.

    Article  CAS  PubMed  Google Scholar 

  296. Sanyaolu A, Okorie C, Marinkovic A, et al. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med. 2020;15:1.

    Google Scholar 

  297. de Souza Ferreira LP, Valente TM, Tiraboschi FA, et al. Description of Covid-19 cases in Brazil and Italy. SN Compr Clin Med. 2020;2(5):497–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Hao X, Zhou D, Li Z, et al. Severe psychological distress among patients with epilepsy during the COVID-19 outbreak in southwest China. Epilepsia. 2020;61(6):1166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Goulart AC, Santos IS, Brunoni AR, et al. Migraine headaches and mood/anxiety disorders in the ELSA Brazil. Headache. 2014;54:1310–9.

    Article  PubMed  Google Scholar 

  300. Smitherman TA, Kolivas ED, Bailey JR. Panic disorder and migraine: comorbidity, mechanisms, and clinical implications. Headache. 2013;53:23–45.

    Article  PubMed  Google Scholar 

  301. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20:533–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Del Boca D, Oggero N, Profeta P, Rossi M. Women’s and men’s work, housework and childcare, before and during COVID-19. Rev Econ Househ. 2020;18:1001–17.

    Article  PubMed  PubMed Central  Google Scholar 

  303. Szperka CL, Ailani J, Barmherzig R, Klein BC, Minen MT, Halker Singh RB, et al. Migraine care in the era of COVID-19: clinical pearls and plea to insurers. Headache. 2020;60(5):833–42.

    Article  PubMed  PubMed Central  Google Scholar 

  304. MaassenVanDenBrink A, de Vries T, Danser AHJ. Headache medication and the COVID-19 pandemic. J Headache Pain. 2020;21(1):38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Arca KN, Smith JH, Chiang C-C, Starling AJ, Robertson CE, Halker Singh RB, et al. COVID-19 and headache medicine: a narrative review of non-steroidal anti-inflammatory drug (NSAID) and corticosteroid use. Headache. 2020;60(8):1558–68.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Ali A. Delay in OnabotulinumtoxinA treatment during the COVID-19 pandemic-perspectives from a virus hotspot. Headache. 2020;60(6):1183–6.

    Article  PubMed  PubMed Central  Google Scholar 

  307. Silvestro M, Tessitore A, Tedeschi G, Russo A. Migraine in the time of COVID-19. Headache. 2020;60(5):988–9.

    Article  PubMed  PubMed Central  Google Scholar 

  308. Dodick DW, Turkel CC, DeGryse RE, Aurora SK, Silberstein SD, Lipton RB, et al. OnabotulinumtoxinA for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT clinical program. Headache. 2010;50(6):921–36.

    Article  PubMed  Google Scholar 

  309. Stewart WF, Lipton RB, Whyte J, Dowson A, Kolodner K, Liberman JN, Sawyer J. An international study to assess reliability of the Migraine Disability Assessment (MIDAS) score. Neurology. 1999;53(5):988–94. https://doi.org/10.1212/wnl.53.5.988.

    Article  CAS  PubMed  Google Scholar 

  310. Ozamiz-Etxebarria N, Dosil-Santamaria M, Picaza-Gorrochategui M, Idoiaga-Mondragon N. Stress, anxiety, and depression levels in the initial stage of the COVID-19 outbreak in a population sample in the northern Spain. Cad Saude Publica. 2020;36(4):e00054020. https://doi.org/10.1590/0102-311X00054020.

    Article  PubMed  Google Scholar 

  311. Suzuki K, Miyamoto T, Miyamoto M, Suzuki S, Watanabe Y, Takashima R, Hirata K. Dream-enacting behaviour is associated with impaired sleep and severe headache-related disability in migraine patients. Cephalalgia. 2013;33(10):868–78. https://doi.org/10.1177/0333102413477742.

    Article  PubMed  Google Scholar 

  312. Ong JJY, Bharatendu C, Goh Y, Tang JZY, Sooi KWX, Tan YL, Tan BYQ, Teoh HL, Ong ST, Allen DM, Sharma VK. Headaches associated with personal protective equipment—a cross-sectional study among frontline healthcare workers during COVID-19. Headache. 2020;60(5):864–77. https://doi.org/10.1111/head.13811.

    Article  PubMed  Google Scholar 

  313. Ali A. Delay in Onabotulinumtoxin a treatment during the COVID-19 pandemic-perspectives from a virus hotspot. Headache. 2020;60:1183–6.

    Article  PubMed  PubMed Central  Google Scholar 

  314. López-Bravo A, García-Azorín D, Belvís R, González-Oria C, Latorre G, Santos-Lasaosa S, et al. Impact of the COVID-19 pandemic on headache management in Spain: an analysis of the current situation and future perspectives. Neurol (Engl Ed). 2020;35(6):372–80.

    Google Scholar 

  315. Santos-Lasaosa S, Porta-Etessam J. OnabotulinumtoxinA infiltration and nerve blocks in patients with headache and neuralgia: safety recommendations to prevent SARS-CoV-2 infection. Neurol (Engl Ed). 2020;35(5):291–4.

    CAS  Google Scholar 

  316. Planchuelo-Gómez Á, Odriozola-González P, Irurtia MJ, de Luis-García R. Longitudinal evaluation of the psychological impact of the COVID-19 crisis in Spain. J Affect Disord. 2020;277:842–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  317. Lucas S. The pharmacology of indomethacin. Headache. 2016;56(2):436–46.

    Article  PubMed  Google Scholar 

  318. Akerman S, Karsan N, Bose P, Hoffmann JR, Holland PR, Romero-Reyes M, et al. Nitroglycerine triggers triptan-responsive cranial allodynia and trigeminal neuronal hypersensitivity. Brain. 2019;142(1):103–19.

    Article  PubMed  Google Scholar 

  319. Iversen HK, Olesen J. Nitroglycerin-induced headache is not dependent on histamine release: support for a direct nociceptive action of nitric oxide. Cephalalgia. 1994;14(6):437–42.

    Article  CAS  PubMed  Google Scholar 

  320. Shehata GA, Lord KC, Grudzinski MC, Elsayed M, Abdelnaby R, Elshabrawy HA. Neurological complications of COVID-19: underlying mechanisms and management. Int J Mol Sci. 2021;22(8):4081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Gonzalez-Martinez A, Planchuelo-Gómez Á, Guerrero ÁL, García-Azorín D, Santos-Lasaosa S, Navarro-Pérez MP, et al. Evaluation of the impact of the COVID-19 lockdown in the clinical course of migraine. Pain Med. 2021;28:449.

    Google Scholar 

  322. Gentile E, Delussi M, Abagnale C, Caponnetto V, De Cesaris F, Frattale I, et al. Migraine during COVID-19: data from second wave pandemic in an Italian cohort. Brain Sci. 2021;11(4):482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Headache Classification Subcommittee of the International Headache Society The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38:1–211.

    Google Scholar 

  324. Mutiawati E, Syahrul S, Fahriani M, Fajar JK, Mamada SS, Maliga HA, et al. Global prevalence and pathogenesis of headache in COVID-19: a systematic review and meta-analysis. F1000Res. 2021;9:1316.

    Article  PubMed Central  Google Scholar 

  325. Machado FC, Carone Neto G, Carone RSD. Sphenopalatine ganglion block for refractory COVID-19 headache: a descriptive case series. Braz J Anesthesiol. 2021;71(6):667–9.

    PubMed  PubMed Central  Google Scholar 

  326. Alkotaji M, Al-Zidan RN. Indomethacin: can it counteract bradykinin effects in COVID-19 patients? Curr Pharmacol Rep. 2021;22:1–5.

    Google Scholar 

  327. Ramasamy MN, Minassian AM, Ewer KJ, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2021;396:1979–93.

    Article  PubMed  Google Scholar 

  328. European Medicines Agency. COVID-19 vaccine AstraZeneca. 2021. Assessment report. Procedure no. EMEA/H/C/005675/0000. EMA/94907/2021:1–181.

    Google Scholar 

  329. Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396:467–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Kim SH, Wi YM, Yun SY, et al. Adverse events in healthcare workers after the first dose of ChAdOx1 nCoV-19 or BNT162b2 mRNA COVID-19 vaccination: a single center experience. J Korean Med Sci. 2021;36:e107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Greinacher A, Thiele T, Warkentin TE, et al. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 2021;384:2092–101.

    Article  CAS  PubMed  Google Scholar 

  332. Göbel C, Heinze A, Karstedt S, et al. Clinical characteristics of headache after vaccination against COVID-19 (coronavirus SARS-CoV-2) with the BNT162b2 mRNA vaccine: a multicentre observational cohort study. Brain Commun. 2021;3(192):1. https://doi.org/10.1093/braincomms/fcab169.

    Article  CAS  Google Scholar 

  333. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395:1845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Vaccine Adverse Event Reporting System (VAERS). VAERS data sets. https://vaers.hhs.gov/data.html. Accessed 10 May 2021

  335. European Medicines Agency. Signal assessment report on embolic and thrombotic events (SMQ) with COVID-19 vaccine (ChAdOx1-S [recombinant])—Vaxzevria (previously COVID-19 Vaccine AstraZeneca) (Other viral vaccines). Published on 08 April 2021. https://www.ema.europa.eu/en/documents/prac-recommendation/signal-assessment-report-embolic-thrombotic-events-smq-covid-19-vaccine-chadox1-s-recombinant_en.pdf.

  336. Krzywicka K, Heldner MR, Sánchez van Kammen M, van Haaps T, Hiltunen S, Silvis SM, Levi M, Kremer Hovinga JA, Jood K, Lindgren E, Tatlisumak T, Putaala J, Aguiar de Sousa D, Middeldorp S, Arnold M, Coutinho JM, Ferro JM. Post-SARS-CoV-2-vaccination cerebral venous sinus thrombosis: an analysis of cases notified to the European medicines agency. Eur J Neurol. 2021;28(11):3656–62. https://doi.org/10.1111/ene.15029.

    Article  PubMed  PubMed Central  Google Scholar 

  337. Schulz JB, Berlit P, Diener HC, Gerloff C, Greinacher A, Klein C, Petzold GC, Piccininni M, Poli S, Röhrig R, Steinmetz H, Thiele T, Kurth T, the German Society of Neurology SARS-CoV-2 Vaccination Study Group, Alonso A, Bartsch T, Baumsteiger C, Bode F, Cangür H, Daffertshofer M, Dafotakis M, Dieterich M, Fabian F, Fousse M, Godau J, Grond M, Günther A, Gutschalk A, Hagemann G, Hartmann C, Hilker-Roggendorf R, Höglinger G, Ikenberg B, Ismail FS, Jesse S, Kallmünzer B, Kern R, Klietz M, Knauß S, Knier B, Limmroth V, Mengel A, Meyne J, Morgenthaler M, Müller M, Nagel S, Niels RD, Onur OA, Pelz J, Plenge J, Poli S, Roth C, Röther J, Saß C, Schönenberger S, Schubert R, Simon O, Agaplesion IS, Sperfeld A, Spreer A, Steinbrecher A, Steiner J, Stetefeld H, Trendelenburg G, Vatankhah NB, Wahl CM, Wartenberg K, Witt K, Wittstock M, Wolf B, Wolf J, Zimmermann J. COVID-19 vaccine-associated cerebral venous thrombosis in Germany. Ann Neurol. 2021;90(4):627–39. https://doi.org/10.1002/ana.26172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. See I, Su JR, Lale A, Woo EJ, Guh AY, Shimabukuro TT, Streiff MB, Rao AK, Wheeler AP, Beavers SF, Durbin AP, Edwards K, Miller E, Harrington TA, Mba-Jonas A, Nair N, Nguyen DT, Talaat KR, Urrutia VC, Walker SC, Creech CB, Clark TA, DeStefano F, Broder KR. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after Ad26.COV2.S vaccination, march 2 to April 21, 2021. JAMA. 2021;325(24):2448–56. https://doi.org/10.1001/jama.2021.7517.

    Article  CAS  PubMed  Google Scholar 

  339. Kristoffersen ES, Harper CE, Vetvik KG, Zarnovicky S, Hansen JM, Faiz KW. Incidence and mortality of cerebral venous thrombosis in a Norwegian population. Stroke. 2020;51(10):3023–9. https://doi.org/10.1161/STROKEAHA.120.030800.

    Article  PubMed  Google Scholar 

  340. Silvis SM, de Sousa DA, Ferro JM, Coutinho JM. Cerebral venous thrombosis. Nat Rev Neurol. 2017;13(9):555–65. https://doi.org/10.1038/nrneurol.2017.104.

    Article  PubMed  Google Scholar 

  341. García-Azorín D, Monje MHG, González-García N, Guerrero ÁL, Porta-Etessam J. Presence of red flags in patients with cerebral venous sinus thrombosis admitted to the emergency department because of headache: a STROBE compliant cohort-study. Medicine (Baltimore). 2020;99(29):e20900. https://doi.org/10.1097/MD.0000000000020900.

    Article  Google Scholar 

  342. Klugar M, Riad A, Mekhemar M, et al. Side effects of mRNA-based and viral vector-based COVID-19 vaccines among German Healthcare Workers. Biology (Basel). 2021;10(8):752. https://doi.org/10.3390/biology10080752.

    Article  CAS  Google Scholar 

  343. Mattiuzzi C, Lippi G. Headache after COVID-19 vaccination: updated report from the Italian Medicines Agency database. Neurol Sci. 2021;42(9):3531–2. https://doi.org/10.1007/s10072-021-05354-4.

    Article  PubMed  PubMed Central  Google Scholar 

  344. Mosadeghi-Nik M, Askari MS, Fatehi F. Mobile health (mHealth) for headache disorders: a review of the evidence base. J Telemed Telecare. 2016;22(8):472–7.

    Article  PubMed  Google Scholar 

  345. Stubberud A, Linde M. Digital technology and mobile health in behavioral migraine therapy: a narrative review. Curr Pain Headache Pain. 2018;22(10):66.

    Article  Google Scholar 

  346. Müller KI, Alstadhaug KB, Bekkelund SI. Headache patients' satisfaction with telemedicine: a 12-month follow-up randomized non-inferiority trial. Eur J Neurol. 2017;24(6):807–15.

    Article  PubMed  PubMed Central  Google Scholar 

  347. Akiyama H, Hasegawa Y. A trial case of medical treatment for primary headache using telemedicine. Medicine (Baltimore). 2018;97:e9891. https://doi.org/10.1097/MD.0000000000009891.

    Article  Google Scholar 

  348. García-Pérez A. Telemedicina en neuropediatría [Telemedicine in pediatric neurology]. Rev Neurol. 2020;71:191–6. https://doi.org/10.33588/rn.7105.2020304. Spanish.

    Article  PubMed  Google Scholar 

  349. Vierhile A, Tuttle J, Adams H, tenHoopen C, Baylor E. Feasibility of providing pediatric neurology telemedicine care to youth with headache. J Pediatr Health Care. 2018;32:500–6. https://doi.org/10.1016/j.pedhc.2018.02.004. Small study of pediatric headache managed via hub and spoke model. Patients followed over 3 months had equivalent headache outcomes to traditional visits and high parent/patient satisfaction.

    Article  PubMed  Google Scholar 

  350. Handschu R, Scibor M, Willaczek B, STENO Project, et al. Telemedicine in acute stroke: remote video-examination compared to simple telephone consultation. J Neurol. 2008;255:1792–7. https://doi.org/10.1007/s00415-008-0066-9.

    Article  PubMed  Google Scholar 

  351. Meyer BC, Lyden PD, Al-Khoury L, et al. Prospective reliability of the STRokE DOC wireless/site independent telemedicine system. Neurology. 2005;64:1058–60. https://doi.org/10.1212/01.wnl.0000209203.87339.21.

    Article  CAS  PubMed  Google Scholar 

  352. Rubin MJ. Teleneurology report card: proof of concept. Pract Neurol. 2011:32–4. http://practicalneurology.com/2011/06/viewpointsteleneurology-report-card-proof-of-concept/.

  353. Friedman DI, Rajan B, Seidmann A. A randomized trial of telemedicine for migraine management. Cephalalgia Int J Headache. 2019;39:1577–85. https://doi.org/10.1177/0333102419868250. Randomized adult migraine patients to telemedicine or in-person visits. Found equivalent MIDAS scores, number of headache days, and average severity at 1 year follow-up.

    Article  Google Scholar 

  354. Bekkelund SI, Müller KI. Video consultations in medication overuse headache. A randomized controlled trial. Brain Behav. 2019;9:e01344. https://doi.org/10.1002/brb3.1344.

    Article  PubMed  PubMed Central  Google Scholar 

  355. Müller KI, Alstadhaug KB, Bekkelund SI. A randomized trial of telemedicine efficacy and safety for nonacute headaches. Neurology. 2017;89(2):153–62. https://doi.org/10.1212/wnl.0000000000004085.

    Article  PubMed  PubMed Central  Google Scholar 

  356. Qubty W, Patniyot I, Gelfand A. Telemedicine in a pediatric headache clinic: a prospective survey. Neurology. 2018;90(19):e1702–5.

    Article  PubMed  Google Scholar 

  357. Ellis MJ, Boles S, Derksen V, Dawyduk B, Amadu A, Stelmack K, et al. Evaluation of a pilot paediatric concussion telemedicine programme for northern communities in Manitoba. Int J Circumpolar Health. 2019;78:1573163. https://doi.org/10.1080/22423982.2019.1573163.

    Article  PubMed  PubMed Central  Google Scholar 

  358. Sharawat IK, Panda PK. Caregiver satisfaction and effectiveness of teleconsultation in children and adolescents with migraine during the ongoing COVID-19 pandemic. J Child Neurol. 2021;36(4):296–303. https://doi.org/10.1177/0883073820968653.

    Article  PubMed  Google Scholar 

  359. Joshi CN, Yang ML, Eschbach K, Tong S, Jacobson MP, Stillman C, et al. Quality and safety analysis of 2999 telemedicine encounters during the COVID-19 pandemic. Neurol Clin Pract. 2020;10:1212. https://doi.org/10.1212/CPJ.0000000000001025. Analyzed over 2000 pediatric neurology telemedicine visits during the COVID19 pandemic. Found no difference in telemedicine efficacy and safety compared to telemedicine before the pandemic. Demonstrated low hospitalization rates and no deaths at 30 days post- telemedicine visits.

    Article  Google Scholar 

  360. World Health Organization. The impact of COVID-19 on mental, neurological and substance use services: results of a rapid assessment. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/publications/i/item/978924012455. Accessed 9 Mar 2021.

  361. World Health Organization. Maintaining essential health services: operational guidance for the COVID-19 context interim guidance. https://www.who.int/publications/i/item/WHO-2019-nCoV-essential-health-services-2020.1. Accessed 8 Apr 2021.

  362. GBD (2019) Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9.

    Article  Google Scholar 

  363. GBD (2019) Demographics Collaborators. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1160–203. https://doi.org/10.1016/S0140-6736(20)30977-6.

    Article  Google Scholar 

  364. Sellner J, Jenkins TM, von Oertzen TJ, et al. A plea for equitable global access to COVID-19 diagnostics, vaccination and therapy: the NeuroCOVID-19 Task Force of the European Academy of Neurology. Eur J Neurol. 2021;28(11):3849–55. https://doi.org/10.1111/ene.14741.

    Article  PubMed  PubMed Central  Google Scholar 

  365. Pareyson D, Pantaleoni C, Eleopra R, et al. Neuro-telehealth for fragile patients in a tertiary referral neurological institute during the COVID-19 pandemic in Milan, Lombardy. Neurolol Sci. 2021;42(7):2637–44. https://doi.org/10.1007/s10072-021-05252-9.

    Article  Google Scholar 

  366. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–602. https://doi.org/10.1016/S0140-6736(16)31678-6.

    Article  Google Scholar 

  367. Penzien DB, Irby MB, Smitherman TA, Rains JC, Houle TT. Well-established and empirically supported behavioral treatments for migraine. Curr Pain Headache Rep. 2015;19(7):34. https://doi.org/10.1007/s11916-015-0500-5.

    Article  PubMed  Google Scholar 

  368. Luxton DD, McCann RA, Bush NE, Mishkind MC, Reger GM. mHealth for mental health: integrating smartphone technology in behavioral healthcare. Prof Psychol Res Pract. 2011;42(6):505–12. https://doi.org/10.1037/a0024485.

    Article  Google Scholar 

  369. Zhu Q, Liu C, Holroyd KA, editors. From a traditional behavioral management program to an m-health app: lessons learned in developing m-health apps for existing health care programs. In: 2012 4th international workshop on Software engineering in health care (SEHC); 2012: IEEE.

    Google Scholar 

  370. Andrasik F. Behavioral treatment of headaches: extending the reach. Neurol Sci. 2012;33(Suppl 1):S127–30. https://doi.org/10.1007/s10072-012-1073-2.

    Article  PubMed  Google Scholar 

  371. Huguet A, McGrath PJ, Wheaton M, Mackinnon SP, Rozario S, Tougas ME, et al. Testing the feasibility and psychometric properties of a mobile diary (myWHI) in adolescents and young adults with headaches. JMIR mHealth and uHealth. 2015;3(2):e39.

    Article  PubMed  PubMed Central  Google Scholar 

  372. Park J-W, Chu MK, Kim J-M, Park S-G, Cho S-J. Analysis of trigger factors in episodic migraineurs using a smartphone headache diary applications. PLoS One. 2016;11(2):e0149577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  373. Jibb LA, Cafazzo JA, Nathan PC, Seto E, Stevens BJ, Nguyen C, et al. Development of a mHealth real-time pain self-management app for adolescents with cancer: an iterative usability testing study. J Pediatr Oncol Nurs. 2017;34(4):283–94.

    Article  PubMed  Google Scholar 

  374. Uddin AA, Morita PP, Tallevi K, Armour K, Li J, Nolan RP, et al. Development of a wearable cardiac monitoring system for behavioral neurocardiac training: a usability study. JMIR Mhealth Uhealth. 2016;4(2):e45. https://doi.org/10.2196/mhealth.5288.

    Article  PubMed  PubMed Central  Google Scholar 

  375. Stinson JN, Lalloo C, Harris L, Isaac L, Campbell F, Brown S, et al. iCanCope with Pain™: user-centred design of a web-and mobile-based self-management program for youth with chronic pain based on identified health care needs. Pain Res Manag. 2014;19(5):257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  376. Cafazzo JA, Casselman M, Hamming N, Katzman DK, Palmert MR. Design of an mHealth app for the self-management of adolescent type 1 diabetes: a pilot study. J Med Internet Res. 2012;14(3):e70.

    Article  PubMed  PubMed Central  Google Scholar 

  377. Schulz A, Doblhammer G. Aktueller und zukünftiger Krankenbestand von Demenz in Deutschland auf Basis der Routinedaten der AOK. Versorgungs-Report: 2012. p. 161–76.

    Google Scholar 

  378. Hufschmidt A, Lücking CH, Rauer S, Glocker FX. Neurologie compact: für Klinik und Praxis. Stuttgart: Georg Thieme Verlag; 2017.

    Book  Google Scholar 

  379. Franklin VL, Waller A, Pagliari C, Greene SA. A randomized controlled trial of Sweet Talk, a text-messaging system to support young people with diabetes. Diabet Med. 2016;23:1332–8. https://doi.org/10.1111/j.1464-5491.2006.01989.x.

    Article  Google Scholar 

  380. Al Najjar S, Al ST. Factors affecting adherence to appointment system in the clinic for non-communicable diseases in UNRWA’s Khan Younis Health Centre and the role of mobile phone text messages to improve adherence: a descriptive cross-sectional study. Lancet (London, England). 2018;391(Suppl 2):S42. https://doi.org/10.1016/S0140-6736(18)30408-2.

    Article  Google Scholar 

  381. Friedman RH, Kazis LE, Jette A, Smith MB, Stollerman J, Torgerson J, Carey K. A telecommunications system for monitoring and counseling patients with hypertension: impact on medication adherence and blood pressure control. Am J Hypertens. 1996;9:285–92.

    Article  CAS  PubMed  Google Scholar 

  382. Bloem BR, Ray Dorsey E, Okun MS. The coronavirus disease 2019 crisis as catalyst for telemedicine for chronic neurological disorders. JAMA Neurol. 2020;77:927–8.

    Article  PubMed  Google Scholar 

  383. Mayring P, Fenzl T. Qualitative Inhaltsanalyse. In: Baur N, Blasius J, editors. Handbuch Methoden der empirischen Sozialforschung. Wiesbaden: Springer Fachmedien Wiesbaden; 2014. p. 543–56.

    Google Scholar 

  384. Hillienhof A. Telemedizin schädigt Arzt-Patienten-Beziehung nicht. Dtsch Arztebl Int. 2012;109:3.

    Google Scholar 

  385. Kluska D. Versorgung aus der Ferne: Die Arzt-Patient-Beziehung unter den Bedingungen der Telemedizin. Forschung Aktuell; 2012.

    Google Scholar 

  386. Pellegrino ABW, Davis-Martin RE, Houle TT, Turner DP, Smitherman TA. Perceived triggers of primary headache disorders: a meta-analysis. Cephalalgia. 2018;38(6):1188–98.

    Article  PubMed  Google Scholar 

  387. Szperka CL, Ailani J, Barmherzig R, Klein BC, Minen MT, Halker Singh RB, Shapiro RE. Migraine care in the era of COVID-19: clinical pearls and plea to insurers. Headache. 2020;60(5):833–42. https://doi.org/10.1111/head.13810.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Martelletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martelletti, P. (2022). Future Directions. In: Martelletti, P. (eds) Migraine in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-97359-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97359-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97358-2

  • Online ISBN: 978-3-030-97359-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics