Skip to main content

SS3D: Unsupervised Out-of-Distribution Detection and Localization for Medical Volumes

  • Conference paper
  • First Online:
Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13166))

  • 1207 Accesses

Abstract

We present an extension of the self-supervised outlier detection (SSD) framework [12] to the three-dimensional case. We first apply contrastive learning on a network using a general dataset of two-dimensional slices randomly sampled from all the available training data. This network serves as a latent embedding encoder of the input images. We model the in-distribution latent density as a multivariate Gaussian, fitted to the embeddings of the training slices. At test time, each test sample is scored by summing the Mahalanobis distances from all its slices to the means of the learned Gaussians. While mainly meant as a sample-level method, this approach additionally enables coarse localization, scoring each voxel by the minimum Mahalanobis distance among the slices that contain it. On the sample-level task of the 2021 MICCAI Medical Out-of-Distribution Analysis Challenge [20], our method ranked second on the challenging abdominal dataset, and fourth overall. Moreover, we show that with pretrained features and the right choice of architecture, a further boost in performance can be gained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bergman, L., Hoshen, Y.: Classification-based anomaly detection for general data. arXiv preprint arXiv:2005.02359 (2020)

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  3. Choi, H., Jang, E., Alemi, A.A.: WAIC, but why? Generative ensembles for robust anomaly detection. arXiv preprint arXiv:1810.01392 (2018)

  4. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. In: Advances in Neural Information Processing Systems, pp. 9758–9769 (2018)

    Google Scholar 

  5. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning can improve model robustness and uncertainty. arXiv preprint arXiv:1906.12340 (2019)

  6. Hou, J., Zhang, Y., Zhong, Q., Xie, D., Pu, S., Zhou, H.: Divide-and-assemble: learning block-wise memory for unsupervised anomaly detection. arXiv preprint arXiv:2107.13118 (2021)

  7. Kurmann, T., et al.: Expert-level automated biomarker identification in optical coherence tomography scans. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  8. Mahalanobis, P.C.: On the generalized distance in statistics. National Institute of Science of India (1936)

    Google Scholar 

  9. Marimont, S.N., Tarroni, G.: Anomaly detection through latent space restoration using vector quantized variational autoencoders. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1764–1767. IEEE (2021)

    Google Scholar 

  10. Reiss, T., Hoshen, Y.: Mean-shifted contrastive loss for anomaly detection. arXiv preprint arXiv:2106.03844 (2021)

  11. Schirrmeister, R.T., Zhou, Y., Ball, T., Zhang, D.: Understanding anomaly detection with deep invertible networks through hierarchies of distributions and features. arXiv preprint arXiv:2006.10848 (2020)

  12. Sehwag, V., Chiang, M., Mittal, P.: SSD: a unified framework for self-supervised outlier detection. arXiv preprint arXiv:2103.12051 (2021)

  13. Serrà, J., Álvarez, D., Gómez, V., Slizovskaia, O., Núñez, J.F., Luque, J.: Input complexity and out-of-distribution detection with likelihood-based generative models. arXiv preprint arXiv:1909.11480 (2019)

  14. Sohn, K., Li, C.L., Yoon, J., Jin, M., Pfister, T.: Learning and evaluating representations for deep one-class classification. arXiv preprint arXiv:2011.02578 (2020)

  15. Tack, J., Mo, S., Jeong, J., Shin, J.: CSI: novelty detection via contrastive learning on distributionally shifted instances. arXiv preprint arXiv:2007.08176 (2020)

  16. Tan, J., Hou, B., Batten, J., Qiu, H., Kainz, B.: Detecting outliers with foreign patch interpolation. arXiv preprint arXiv:2011.04197 (2020)

  17. Tang, Y.X., et al.: Automated abnormality classification of chest radiographs using deep convolutional neural networks. NPJ Digital Medicine 3(1), 1–8 (2020)

    Article  Google Scholar 

  18. Xiao, Z., Yan, Q., Amit, Y.: Do we really need to learn representations from in-domain data for outlier detection? arXiv preprint arXiv:2105.09270 (2021)

  19. Yoon, S., Noh, Y.K., Park, F.C.: Autoencoding under normalization constraints. arXiv preprint arXiv:2105.05735 (2021)

  20. Zimmerer, D., et al.: Medical out-of-distribution analysis challenge 2021, March 2021. https://doi.org/10.5281/zenodo.4573948

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Doorenbos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doorenbos, L., Sznitman, R., Márquez-Neila, P. (2022). SS3D: Unsupervised Out-of-Distribution Detection and Localization for Medical Volumes. In: Aubreville, M., Zimmerer, D., Heinrich, M. (eds) Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis. MICCAI 2021. Lecture Notes in Computer Science(), vol 13166. Springer, Cham. https://doi.org/10.1007/978-3-030-97281-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97281-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97280-6

  • Online ISBN: 978-3-030-97281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics