Skip to main content

A Survey on Chaos-Based Cryptosystems: Implementations and Applications

  • Conference paper
  • First Online:
14th Chaotic Modeling and Simulation International Conference (CHAOS 2021)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

Chaos theory is considered as a tool for studying the systems that show divergence and disorder. After having used discrete mathematics to deduce non-convergence situations, these theories are modeled in the form of a dynamic system and are applied in several domains such as electronic, mechanic, network security, etc. In network security domain, the development of new cryptosystems based on chaos is a relatively new area of research and is increasingly relevant. The essence of the theoretical and practical efforts in this field derive from the fact that these cryptosystems are faster than conventional methods, while ensuring performance of security, at least similar. In this paper, we discuss several proposals about chaos-based cryptosystem and pseudo-random number generator (PRNG). Moreover, topology and architecture of the proposed chaos systems are detailed. Finally, in order to show the more suitable system for encryption and secure communication, a synthesis comparison is presented and considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Bouteghrine, M. Rabiai, C. Tanougast, S. Sadoudi, FPGA implementation of Internet key exchange based on chaotic cryptosystem, in 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) (Metz, France, 2019), pp. 384–387

    Google Scholar 

  2. B. Baruah, M. Saikia, An FPGA implementation of chaos based image encryption and its performance analysis. IJCSN Int. J. Comput. Sci. Netw. 5, 5 (2016) (Unpaginated)

    Google Scholar 

  3. S. Chen, S. Yu, J. Lu, G. Chen, J. He, Design and FPGA-based realization of a chaotic secure video communication system. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2359–2371 (2017)

    Article  Google Scholar 

  4. H. Sreenath, G. Narayanan, FPGA implementation of pseudo chaos-signal generator for secure communication systems, in 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (Bangalore, India, 2018), pp. 804–807

    Google Scholar 

  5. B. Bouteghrine, M. Rabiai, C. Tanougast, S. Sadoudi, Hardware implementation of secured socket communication based on chaotic cryptosystem, in 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security) (Oxford, UK, 2019), pp. 1–4

    Google Scholar 

  6. A. Qi, C. Han, G. Wang, Design and FPGA realization of a pseudo random sequence generator based on a switched chaos, in 2010 International Conference on Communications, Circuits and Systems (ICCCAS) (Chengdu, China, 2010), pp. 417–420

    Google Scholar 

  7. J. Lu, X. Wu, X. Han, J. Lu, Adaptive feedback synchronization of a unified chaotic system. Phys. Lett. A 329(4–5), 327–333 (2004)

    Article  ADS  Google Scholar 

  8. M.S. Azzaz et al., FPGA implementation of new real-time image encryption based switching chaotic systems, in IET Irish Signals and Systems Conference (ISSC 2009), vol. 56. (Dublin. Ireland, 2009)

    Google Scholar 

  9. M. Tuna, A novel secure chaos-based pseudo random number generator based on ANN-based chaotic and ring oscillator: design and its FPGA implementation. Analog Integr. Circ. Sig. Process 105(2), 167–181 (2020)

    Article  Google Scholar 

  10. A. Senouci et al., FPGA based hardware and device-independent implementation of chaotic generators. AEU-Int. J. Electron. Commun. 82, 211–220 (2017)

    Article  Google Scholar 

  11. F. Yu et al., Design and FPGA implementation of a pseudo-random number generator based on a four-wing memristive hyperchaotic system and Bernoulli map. IEEE Access 7, 181884–181898 (2019)

    Article  Google Scholar 

  12. I. Koyuncu et al., Design, FPGA implementation and statistical analysis of chaos-ring based dual entropy core true random number generator. Analog Integr. Circ. Sig. Process. 102(2), 445–456 (2020)

    Article  Google Scholar 

  13. C.H. Yang, Y.S. Chien, FPGA implementation and design of a hybrid Chaos-AES color image encryption algorithm. Symmetry 12(2), 189 (2020)

    Article  Google Scholar 

  14. M. Garcia-Bosque et al., Chaos-based bitwise dynamical pseudorandom number generator on FPGA. IEEE Trans. Instrum. Measur. 68(1), 291–293 (2018)

    Article  Google Scholar 

  15. Z. Hua, B. Zhou, Y. Zhou, Sine-transform-based chaotic system with FPGA implementation. IEEE Trans. Industr. Electron. 65(3), 2557–2566 (2017)

    Article  Google Scholar 

  16. A.M. Atteya, A.H. Madian, A hybrid Chaos-AES encryption algorithm and its implemention based on FPGA, in IEEE 12th International New Circuits and Systems Conference (NEWCAS), vols. 217–220 (Quebec, Canada, 2014)

    Google Scholar 

  17. L. Merah et al., FPGA hardware co-simulation of new chaos-based stream cipher based on Lozi map. Int. J. Eng. Technol. 9(5), 420–425 (2017)

    Article  Google Scholar 

  18. Y. Mao, L. Cao and W. Liu, Design and FPGA implementation of a pseudo-random bit sequence generator using spatiotemporal chaos, in 2006 International Conference on Communications, Circuits and Systems (Guangzi, China, 2006), pp. 2114–2118

    Google Scholar 

  19. D.I. Lanlege et al., Comparison of Euler and Range-Kutta methods in solving ordinary differential equations of order two and four. Leonardo J. Sci. 32, 10–37 (2018)

    Google Scholar 

  20. S.C. Palligkinis, G. Papageorgiou, I.T. Famelis, Runge-Kutta methods for fuzzy differential equations. Appl. Math. Comput. 209, 97–105 (2009)

    MathSciNet  MATH  Google Scholar 

  21. C.H. Yang, H.C. Wu, S.F. Su, Implementation of encryption algorithm and wireless image transmission system on FPGA. IEEE Access 7, 50513–50523 (2019)

    Article  Google Scholar 

  22. P. Dabal, R. Pelka, A chaos-based pseudo-random bit generator implemented in FPGA device, in 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems (Cottbus, Germany, 2011), pp. 151–154

    Google Scholar 

  23. R. Hobincu, O. Datcu, FPGA implementation of a chaos based PRNG targetting secret communication, International Symposium on Electronics and Telecommunications (ISETC), Timisoara. Romania 1–4, 2018 (2018)

    Google Scholar 

  24. E. Tlelo-Cuautle et al., FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn. 82(4), 1879–1892 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belqassim Bouteghrine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouteghrine, B., Tanougast, C., Sadoudi, S. (2022). A Survey on Chaos-Based Cryptosystems: Implementations and Applications. In: Skiadas, C.H., Dimotikalis, Y. (eds) 14th Chaotic Modeling and Simulation International Conference. CHAOS 2021. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-96964-6_6

Download citation

Publish with us

Policies and ethics