Skip to main content

Minimum t-Spanners on Subcubic Graphs

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2022)

Abstract

For a constant \(t \ge 1\), a t-spanner of a connected graph G is a spanning subgraph of G in which the distance between any pair of vertices is at most t times its distance in G. We address two problems on spanners: the minimum t-spanner problem (MinS \(_t\)), and a minimization version of the tree t-spanner problem (TreeS \(_t\)). MinS \(_t\) seeks a t-spanner with minimum number of edges. TreeS \(_t\) is a decision problem concerning the existence of a t-spanner that is a tree. The concept of spanner was introduced by Peleg & Ullman in 1989, in a context regarding the construction of optimal synchronizers for the hypercube. MinS \(_t\) is known to be \(\textsc {NP}\)-hard for every \(t \ge 2\) even on some bounded-degree graphs. TreeS \(_t\) is polynomially solvable for \(t=2\) and \(\textsc {NP}\)-complete for \(t \ge 4\), but its complexity for \(t=3\) remains open.

We investigate both MinS \(_3\) and TreeS \(_2\) on the class of subcubic graphs. We prove that MinS \(_3\) can be solved in polynomial time, using a similar technique as the one used by Cai & Keil (1994) for \(t=2\). This result also gives an alternative algorithm to solve TreeS \(_3\) in polynomial time. Additionally, we study TreeS \(_2\) from a polyhedral point-of-view and show a complete linear characterization of the associated polytope. This result, interesting on its own right, gives a polynomial-time algorithm to solve a natural minimization version of TreeS \(_2\) on subcubic graphs with costs assigned to its edges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, R., et al.: Graph spanners: a tutorial review. Comput. Sci. Rev. 37, 100253 (2020)

    Google Scholar 

  2. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993). https://doi.org/10.1007/BF02189308

    Article  MathSciNet  MATH  Google Scholar 

  3. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected \(O(n^2)\) time. ACM Trans. Algorithms 2(4), 557–577 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bodlaender, H.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  Google Scholar 

  5. Cai, L.: NP-completeness of minimum spanner problems. Discrete Appl. Math. 48(2), 187–194 (1994)

    Article  MathSciNet  Google Scholar 

  6. Cai, L., Corneil, D.: Tree spanners. SIAM J. Discrete Math. 8(3), 359–387 (1995)

    Article  MathSciNet  Google Scholar 

  7. Cai, L., Keil, M.: Spanners in graphs of bounded degree. Networks 24(4), 233–249 (1994)

    Article  MathSciNet  Google Scholar 

  8. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic, Encyclopedia of Mathematics and its Applications, vol. 138. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  9. Couto, F., Cunha, L., Posner, D.: Edge tree spanners. In: Gentile, C., Stecca, G., Ventura, P. (eds.) Graphs and Combinatorial Optimization: from Theory to Applications. ASS, vol. 5, pp. 195–207. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63072-0_16

    Chapter  Google Scholar 

  10. Dantzig, G., Thapa, M.: Linear Programming. 2: Theory and Extensions. Springer Series in Operations Research, Springer, New York (2003). https://doi.org/10.1007/b97283

  11. Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theory Comput. Syst. 41(4), 691–729 (2007)

    Article  MathSciNet  Google Scholar 

  12. Fekete, S., Kremer, J.: Tree spanners in planar graphs. Discrete Appl. Math. 108(1–2), 85–103 (2001)

    Article  MathSciNet  Google Scholar 

  13. Fomin, F., Golovach, P., van Leeuwen, E.: Spanners of bounded degree graphs. Inf. Process. Lett. 111(3), 142–144 (2011)

    Article  MathSciNet  Google Scholar 

  14. Kobayashi, Y.: NP-hardness and fixed-parameter tractability of the minimum spanner problem. Theoret. Comput. Sci. 746, 88–97 (2018)

    Article  MathSciNet  Google Scholar 

  15. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30(3), 432–450 (2001)

    Article  MathSciNet  Google Scholar 

  16. Kortsarz, G., Peleg, D.: Generating sparse \(2\)-spanners. J. Algorithms 17(2), 222–236 (1994)

    Article  MathSciNet  Google Scholar 

  17. Lin, L., Lin, Y.: Optimality computation of the minimum stretch spanning tree problem. Appl. Math. Comput. 386, 125502 (2020)

    Google Scholar 

  18. Papoutsakis, I.: Tree spanners of bounded degree graphs. Discrete Appl. Math. 236, 395–407 (2018)

    Article  MathSciNet  Google Scholar 

  19. Peleg, D., Schäffer, A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)

    Article  MathSciNet  Google Scholar 

  20. Peleg, D., Ullman, J.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18(4), 740–747 (1989)

    Article  MathSciNet  Google Scholar 

  21. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989)

    Article  MathSciNet  Google Scholar 

  22. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  23. Venkatesan, G., Rotics, U., Madanlal, M., Makowsky, J., Pandu Rangan, C.: Restrictions of minimum spanner problems. Inf. Comput. 136(2), 143–164 (1997)

    Article  MathSciNet  Google Scholar 

  24. Wang, W., Balkcom, D., Chakrabarti, A.: A fast online spanner for roadmap construction. Int. J. Rob. Res. 34(11), 1418–1432 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by FAPESP - São Paulo Research Foundation (Proc. 2015/11937-9). R. Gómez is supported by FAPESP (Proc. 2019/14471-1); F.K. Miyazawa is supported by CNPq (Proc. 314366/2018-0 and 425340/2016-3) and FAPESP (Proc. 2016/01860-1); Y. Wakabayashi is supported by CNPq (Proc. 306464/2016-0 and 423833/2018-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez, R., Miyazawa, F., Wakabayashi, Y. (2022). Minimum t-Spanners on Subcubic Graphs. In: Mutzel, P., Rahman, M.S., Slamin (eds) WALCOM: Algorithms and Computation. WALCOM 2022. Lecture Notes in Computer Science(), vol 13174. Springer, Cham. https://doi.org/10.1007/978-3-030-96731-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96731-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96730-7

  • Online ISBN: 978-3-030-96731-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics