Skip to main content

Dynamic Analysis and PID Control of a Double Pendulum Arm Excited by a Nonideal Source

  • Chapter
  • First Online:
Nonlinear Vibrations Excited by Limited Power Sources

Abstract

In this paper the dynamics of a double pendulum arm coupled through a magnetic field to a nonlinear RLC based shaker circuit is presented and will be studied numerically. This kind of electromechanical system is often found in robotic systems and has important applications in Engineering Sciences. The double pendulum considered is coupled through a magnetic field to an RLC circuit based on nonlinear shaker. The nonlinear response analysis of the system is done by various techniques, including bifurcation diagrams, phase portraits, power spectral densities, and Lyapunov exponents. Numerical simulations show the existence of chaotic and hyperchaotic behavior for some regions of the parameter space. In order to suppress the chaotic motion, a PID control is proposed and analyzed. Numerical simulations show the effectiveness of the proposed control in suppressing the chaotic motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clifford, M.J., Bishop, S.R.: Rotating periodic orbits of the parametrically excited pendulum. Phys. Lett. A 201(2–3), 191–196 (1995)

    Article  MathSciNet  Google Scholar 

  2. Clifford, M.J., Bishop, S.R.: Locating oscillatory orbits of the parametrically-excited pendulum. J. Australian Math. Soc. Ser. B – Appl. Math. 37, 309–319 (1996)

    Article  MathSciNet  Google Scholar 

  3. Lu. C.: Chaotic motions of a parametrically excited pendulum. Commun. Nonlinear Sci. Numer. Simul. 11(7), 861–884 (2006)

    Google Scholar 

  4. Lenci, S., Pavlovskaia, E., Rega, G., Wiercigroch, M.: Rotating solutions and stability of parametric pendulum by perturbation method. J. Sound Vib. 310, 243–259 (2008)

    Article  Google Scholar 

  5. Lenci, S., Rega, G.: Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: a dynamical integrity perspective. Physica D 240, 814–824 (2011)

    Article  Google Scholar 

  6. Nagamine, T., Sato, Y., Koseki, Y.: Stable rotation of a parametrically excited double pendulum. J. Vib. Control 13(2), 111–124 (2007)

    Article  Google Scholar 

  7. Masoud, Z., Alhazza, K., Abu-Nada, E., Majeed, M.: A hybrid command-shaper for double-pendulum overhead cranes. J. Vib. Control 20(1), 24–37 (2012)

    Article  Google Scholar 

  8. Bridges, T.J., Georgiou, K.V.: A transverse spinning double pendulum. Chaos, Solitons Fractals 12, 131–144 (2001). https://doi.org/10.1016/S0960-0779(99)00180-0

  9. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V.: Using passive control by a pendulum in a portal frame platform with piezoelectric energy harvesting. J. Vib. Control 1, 107754631770938–1 (2017)

    Google Scholar 

  10. Janzen, F.C., Tusset, A.M., Balthazar, J.M., Rocha, R.T., De Lima, J.J., Nabarrete, A.: Offshore energy harvesting of a marine floating pendulum platform model. Latin Am. J. Solids Struct. 16, 1–13 (2019)

    Article  Google Scholar 

  11. Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R.C., Pontes, B.R., Felix, J.L.P., Bueno, A.M.: A non-ideal portal frame energy harvester controlled using a pendulum. Eur. Phys. J.. Special Topics 222, 1575–1586 (2013)

    Google Scholar 

  12. Sado, D., Kot, M.: Nonlinear oscillations of a coupled autoparametrical system with ideal and nonideal sources of power. In: Mathematical Problem in Engineering, pp. 1–20 (2006)

    Google Scholar 

  13. Sado, D., Kot, M.: Chaotic vibration of an autoparametrical system with a non ideal source of power. J. Theor. Appl. Mech. 45(1), 119–131 (2007)

    Google Scholar 

  14. Avanço, R.H., Navarro, H.A., Brasil, R.M.L.R., Balthazar, J.M., Bueno, A.M., Tusset, A.M.: Statements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanism. Meccanica 51, 1301–1320 (2015)

    Article  MathSciNet  Google Scholar 

  15. Avanço, R.H., Tusset, A.M., Balthazar, J.M., Nabarrete, A., Navarro, H.A.: On nonlinear dynamics behavior of an electro-mechanical pendulum excited by a nonideal motor and a chaos control taking into account parametric errors. J. Braz. Soc. Mech. Sci. Eng. 40, 1–17 (2018)

    Article  Google Scholar 

  16. Avanço, R.H., Tusset, A.M., Suetake, M., Navarro, H.A., Balthazar, J.M., Nabarrete, A.: Energy harvesting through pendulum motion and DC generators. Latin Am. J. Solids Struct. 16, 1–12 (2019)

    Article  Google Scholar 

  17. Sado, D., Gajos, K.: Analysis of vibration of three degree of freedom dynamical system with double pendulum. J. Theor. Appl. Mech. 46(1), 141–156 (2008)

    MATH  Google Scholar 

  18. Tusset, A.M., Piccirillo, V., Bueno, A.M., Balthazar, J.M., Sado, D., Felix, J.L.P., Brasil, R.M.L.R.: Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J. Vib. Control 22, 3621–3637 (2016)

    Article  MathSciNet  Google Scholar 

  19. Awrejcewicz, J., Supel, B., Lamarque, C.-H., Kudra, G., Wasilewski, G., Olejnik, P.: Numerical and experimental study of regular and chaotic motion of triple physical pendulum. Int. J. Bifurc. Chaos 18(10), 2883–2915 (2008)

    Article  MathSciNet  Google Scholar 

  20. Awrejcewicz, J., Kudra, G.: The piston-connecting rod-crankshaft system as triple physical pendulum with impacts. Int. J. Bifurc. Chaos 15(07), 2207–2226 (2005)

    Article  Google Scholar 

  21. Awrejcewicz, J., Kudra, G., Lamarque, C.H.: Investigation of triple pendulum with impacts using fundamental solution matrices. Int. J. Bifurc. Chaos 14(12), 4191–4213 (2004)

    Article  MathSciNet  Google Scholar 

  22. Awrejcewicz, J., Kudra, G., Wasilewski, G.: Experimental and numerical investigation of chaotic regions in the triple physical pendulum. Nonlinear Dyn 50, 755–766 (2007)

    Article  Google Scholar 

  23. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińska, G.: Asymptotic analysis of resonances in nonlinear vibrations of the 3-dof pendulum. Differ Equ Dyn Syst 21, 123–140 (2013)

    Article  MathSciNet  Google Scholar 

  24. Kecik, K., Warminski, J.: Chaos in mechanical pendulum-like system near main parametric resonance. In: Procedia IUTAM: IUTAM Symposium on 50 Years of Chaos: Applied and Theoretical, vol. 5, pp. 249–258 (2012)

    Google Scholar 

  25. Stachowiak, T., Okada, T.: A numerical analysis of chaos in the double pendulum. Chaos, Solitons Fractals 29, 417–422 (2006)

    Article  Google Scholar 

  26. Xu, X., Wiercigroch, M., Cartmell, M.P.: Rotating orbits of a parametrically-excited pendulum. Chaos, Solitons Fractals 23, 1537–1548 (2005)

    Article  Google Scholar 

  27. Ge, Z.M., Yang, C.H., Chen, H.H., Lee, S.C.: Non-linear dynamics and chaos control of a physical pendulum with vibrating and rotating support. J. Sound Vib. 242(2), 247–264 (2001)

    Article  Google Scholar 

  28. Wang, R., Jing, Z.: Chaos control of chaotic pendulum system. Chaos, Solitons Fractals 21, 201–207 (2004)

    Article  MathSciNet  Google Scholar 

  29. Yokoi, Y., Hikihara, T.: Tolerance of start-up control of rotation in parametric pendulum by delayed feedback. Phys. Lett. A 375, 1779–1783 (2011)

    Article  Google Scholar 

  30. Tusset, A.M., Bueno, A.M., Dos Santos, J.P.M., Tsuchida, M., Balthazar, J.M.: A non-ideally excited pendulum controlled by SDRE technique. J. Braz. Soc. Mech. Sci. Eng. 38, 2459–2472 (2016)

    Article  Google Scholar 

  31. Tusset, A.M., Janzen, F.C., Piccirillo, V., Rocha, R.T., Balthazar, J.M., Litak, G.: On nonlinear dynamics of a parametrically excited pendulum using both active control and passive rotational (MR) damper. J. Vib. Control 1, 107754631771488–12 (2017)

    Google Scholar 

  32. Wu, A., Cang, S., Zhang, R., Wang, Z.: Hyperchaos in a conservative system with nonhyperbolic fixed points. Complexity 2018, 1–8 (2018)

    MATH  Google Scholar 

  33. Tusset, A.M., Piccirillo, V., Janzen, F.C., Lenz, W.B., Lima, J.J., Balthazar, J.M., Brasil, M.R.L.F.: Suppression of vibrations in a nonlinear half-car model using a magneto-rheological damper. Math. Eng., Sci. Aerospace: Transdiscip. Int. J. 5, 427–443 (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tusset, A.M. et al. (2022). Dynamic Analysis and PID Control of a Double Pendulum Arm Excited by a Nonideal Source. In: Balthazar, J.M. (eds) Nonlinear Vibrations Excited by Limited Power Sources. Mechanisms and Machine Science, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-030-96603-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96603-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96602-7

  • Online ISBN: 978-3-030-96603-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics