Skip to main content

Fuel Break Monitoring with Sentinel-2 Imagery and GEDI Validation

  • Conference paper
  • First Online:
Internet of Things. Technology and Applications (IFIPIoT 2021)

Abstract

Mediterranean Europe is strongly affected by wildfires. In Portugal, the Portuguese Institute for Nature Conservation and Forests (ICNF) implemented the national fuel break (FB) network responsible for fire control and suppression. FBs are regions where vegetation is reduced to break up the fuel continuity and create pathways for the firefighting vehicles. The efficiency of this strategy relies on the correct implementation of FBs and on periodic fuel treatments. Multispectral imagery from Sentinel-2 (with high temporal and spatial resolution) facilitates the monitoring of FBs and the implementation of methodologies for their management. In this paper a two stages methodology is proposed for monitoring FBs. The first stage consists in detecting fuel treatments in FBs, to understand if those were correctly executed. This is done through a change detection methodology with resource to an Artificial Neural Network. The second stage monitors the vegetation recovery after a fuel treatment, to aid the scheduling of new treatments, ensuring the efficiency of FBs during the fire season. Both methodologies resort to reflectance bands and spectral indices from Sentinel-2; and timeseries and objects, exploiting the temporal and spatial information. The two stages were tested in different regions across the Portuguese territory, demonstrating their usability for all the national fuel break network. The detection of treatments achieved a relative error lower than 4%, and the vegetation recovery cycle estimated by the second stage match the expectations from ICNF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANN:

Artificial Neural Network

EO:

Earth Observation

ExG:

Excess of Green

ExR:

Excess of Red

FB:

Fuel Break

FBN:

Fuel Break Network

FH:

Forest Height

FL:

Fuel Load

FT:

Fuel Treatment

GEDI:

Global Ecosystem Dynamics Investigation

LiDAR:

Light Detection And Ranging

NDVI:

Normalized Difference Vegetation Index

References

  1. Barbero, R., Abatzoglou, J.T., Larkin, N.K., Kolden, C.A., Stocks, B.: Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildl. Fire 24(7), 892 (2015). https://doi.org/10.1071/WF15083

    Article  Google Scholar 

  2. Tymstra, C., Stocks, B.J., Cai, X., Flannigan, M.D.: Wildfire management in Canada: review, challenges and opportunities. Prog. Disaster Sci. 5, 100045 (2020). https://doi.org/10.1016/j.pdisas.2019.100045

    Article  Google Scholar 

  3. San-Miguel-Ayanz, J., et al.: Forest Fires in Europe, Middle East and North Africa 2018. Publications Office of the European Union, Rome (2019)

    Google Scholar 

  4. Chuvieco, E., et al.: Historical background and current developments for mapping burned area from satellite earth observation. Remote Sens. Environ. 225(March), 45–64 (2019). https://doi.org/10.1016/j.rse.2019.02.013

    Article  Google Scholar 

  5. Bowman, D.M.J.S., Williamson, G.J., Abatzoglou, J.T., Kolden, C.A., Cochrane, M.A., Smith, A.M.S.: Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1(3), 1–6 (2017). https://doi.org/10.1038/s41559-016-0058

    Article  Google Scholar 

  6. Ascoli, D., Russo, L., Giannino, F., Siettos, C., Moreira, F.: “Firebreak and Fuelbreak”, in Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, pp. 1–9. Springer International Publishing, Cham (2018)

    Book  Google Scholar 

  7. DPFVAP – ICNF: Primary Fuelbreak Network Manual. Portugal (2014)

    Google Scholar 

  8. Potapov, P., et al.: Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021). https://doi.org/10.1016/j.rse.2020.112165

    Article  Google Scholar 

  9. Healey, S.P., Yang, Z., Gorelick, N., Ilyushchenko, S.: Highly local model calibration with a new GEDI LiDAR asset on google earth engine reduces Landsat forest height signal saturation. Remote Sens. 12(17), 2840 (2020). https://doi.org/10.3390/rs12172840

    Article  Google Scholar 

  10. Barsi, Á., Kugler, Z., László, I., Szabó, G., Abdulmutalib, H.M.: Accuracy dimensions in remote sensing. Int. Archiv. Photogram. Remote Sen. Spatial Inf. Sci. XLII–3, 61–67 (2018). https://doi.org/10.5194/isprs-archives-XLII-3-61-2018

    Article  Google Scholar 

  11. Hamunyela, E., Reiche, J., Verbesselt, J., Herold, M.: Using space-time features to improve detection of forest disturbances from Landsat time series. Remote Sens. 9(6), 1–17 (2017). https://doi.org/10.3390/rs9060515

    Article  Google Scholar 

  12. Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W.: An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sens. Environ. 158, 220–234 (2015). https://doi.org/10.1016/j.rse.2014.11.005

    Article  Google Scholar 

  13. Wang, W., Chen, Z., Li, X., Tang, H., Huang, Q., Qu, L.: Detecting spatio-temporal and typological changes in land use from Landsat image time series. J. Appl. Remote Sens. 11(3), 035006 (2017). https://doi.org/10.1117/1.JRS.11.035006

    Article  Google Scholar 

  14. Zhu, Z., Woodcock, C.E.: Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 144, 152–171 (2014). https://doi.org/10.1016/j.rse.2014.01.011

    Article  Google Scholar 

  15. Hao, Y., Chen, Z., Huang, Q., Li, F., Wang, B., Ma, L.: Bidirectional segmented detection of land use change based on object-level multivariate time series. Remote Sens. 12, 478 (2020). https://doi.org/10.3390/rs12030478

    Article  Google Scholar 

  16. Ku, N.W., Popescu, S.C.: A comparison of multiple methods for mapping local-scale mesquite tree aboveground biomass with remotely sensed data. Biomass Bioenerg. 122(January), 270–279 (2019). https://doi.org/10.1016/j.biombioe.2019.01.045

    Article  Google Scholar 

  17. Lee, J., Im, J., Kim, K., Quackenbush, L.: Machine learning approaches for estimating forest stand height using plot-based observations and airborne LiDAR data. Forests 9(5), 268 (2018). https://doi.org/10.3390/f9050268

    Article  Google Scholar 

  18. Lang, N., Schindler, K., Wegner, J.D.: Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sens. Environ. 233, 111347 (2019). https://doi.org/10.1016/j.rse.2019.111347

    Article  Google Scholar 

  19. Puliti, S., et al.: Modelling above-ground biomass stock over Norway using national forest inventory data with ArcticDEM and Sentinel-2 data. Remote Sens. Environ. 236, 111501 (2020). https://doi.org/10.1016/j.rse.2019.111501

    Article  Google Scholar 

  20. Wittke, S., Xiaowei, Y., Karjalainen, M., Hyyppä, J., Puttonen, E.: Comparison of two-dimensional multitemporal sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest. Int. J. Appl. Earth Observ. Geoinf. 76, 167–178 (2019). https://doi.org/10.1016/j.jag.2018.11.009

    Article  Google Scholar 

  21. Cougo, M.F., et al.: Radarsat-2 backscattering for the modeling of biophysical parameters of regenerating mangrove forests. Remote Sens. 7(12), 17097–17112 (2015). https://doi.org/10.3390/rs71215873

    Article  Google Scholar 

  22. Pereira-Pires, J.E., Aubard, V., Ribeiro, R.A., Fonseca, J.M., Silva, J.M.N., Mora, A.: Semi-automatic methodology for fire break maintenance operations detection with sentinel-2 imagery and artificial neural network. Remote Sens. 12(6), 909 (2020). https://doi.org/10.3390/rs12060909

    Article  Google Scholar 

  23. Dubayah, J.R., Tang, H., Armston, J., Luthcke, S., Hofton, M., Blair, J.B.: GEDI L2B canopy cover and vertical profile metrics data global footprint level V001. In: NASA EOSDIS Land Processes DAAC (2020). https://doi.org/10.5067/GEDI/GEDI02_B.001

  24. Clerc, S.: MPC Team: S2 MPC - L1C Data Quality Report - ESA (2020)

    Google Scholar 

  25. Guizar-Sicairos, M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image registration algorithms. Opt. Lett. 33(2), 156 (2008). https://doi.org/10.1364/ol.33.000156

    Article  Google Scholar 

  26. Pereira-Pires, J.E., et al.: Pixel-based and object-based change detection methods for assessing fuel break maintenance. In: 2020 International Young Engineers Forum (YEF-ECE), July 2020, pp. 49–54 (2020). https://doi.org/10.1109/YEF-ECE49388.2020.9171818

  27. Lang, N., Schindler, K., Wegner, J.D.: Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sens. Environ. 233(April), 111347 (2019). https://doi.org/10.1016/j.rse.2019.111347

    Article  Google Scholar 

  28. Aubard, V., Pereira-Pires, J.E., Campagnolo, M.L., Pereira, J.M.C., Mora, A., Silva, J.M.N.: Fully automated countrywide monitoring of fuel break maintenance operations. Remote Sens. 12(18), 2879 (2020). https://doi.org/10.3390/rs12182879

    Article  Google Scholar 

  29. Mutanga, O., Skidmore, A.K.: Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 25(19), 3999–4014 (2004). https://doi.org/10.1080/01431160310001654923

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Fundação de Ciências e Tecnologia (FCT) for funding the projects FUELMON (PTDC/CCI-COM/30344/2017) and foRESTER (PCIF/SSI/0102/2017), and the Research Units, Centre of Technology and Systems – Uninova (UIDB/00066/2020) and Forest Research Centre (UIDB/00239/2020). Also, the ICNF deserves an acknowledgment for presenting us with the topic and supplying data regarding FB treatments. João E. Pereira-Pires thanks the Fundação para a Ciência e Tecnologia (FC&T), Portugal for the Ph.D. Grant 2020.05015.BD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João E. Pereira-Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pereira-Pires, J.E., Aubard, V., Baldassarre, G., Fonseca, J.M., Silva, J.M.N., Mora, A. (2022). Fuel Break Monitoring with Sentinel-2 Imagery and GEDI Validation. In: Camarinha-Matos, L.M., Heijenk, G., Katkoori, S., Strous, L. (eds) Internet of Things. Technology and Applications. IFIPIoT 2021. IFIP Advances in Information and Communication Technology, vol 641. Springer, Cham. https://doi.org/10.1007/978-3-030-96466-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96466-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96465-8

  • Online ISBN: 978-3-030-96466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics