Skip to main content

Circadian Rhythms and Exercise Metabolism

  • Chapter
  • First Online:
Exercise Metabolism

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1724 Accesses

Abstract

The goal of this chapter is to review the current state of the emerging field of circadian rhythms and exercise metabolism. Since this area of research is fairly new, we have broken up this chapter into the following sections. (1) The role of circadian rhythms and in maintaining homeostasis; (2) introduction to the circadian clock mechanism and clock output; (3) the role of the circadian clock in regulation of resting fat and carbohydrate metabolism in the skeletal muscle; and (4) interactions between exercise and circadian rhythms. We hope that this chapter can serve as a reference and/or entry point for scientists wanting to integrate circadian concepts in their understanding or research design of exercise metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ab Malik Z, Bowden Davies KA, Hall ECR et al (2020) Diurnal differences in human muscle isometric force in vivo are associated with differential phosphorylation of Sarcomeric M-band proteins. Proteomes 8:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamovich Y, Rousso-Noori L, Zwighaft Z et al (2014) Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19:319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameer F, Scandiuzzi L, Hasnain S et al (2014) De novo lipogenesis in health and disease. Metabolism 63:895–902

    Article  CAS  PubMed  Google Scholar 

  • Andrews JL, Zhang X, McCarthy JJ et al (2010) CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci 107:19090–19095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aras E, Ramadori G, Kinouchi K et al (2019) Light entrains diurnal changes in insulin sensitivity of skeletal muscle via ventromedial hypothalamic neurons. Cell Rep 27:2385–2398.e3

    Article  CAS  PubMed  Google Scholar 

  • Aschoff J (1965) CIRCADIAN RHYTHMS IN MAN. Science 148:1427–1432

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Gatfield D, Stratmann M et al (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  • Atkinson G, Reilly T (1996) Circadian variation in sports performance. Sport Med 21:292–312

    Article  CAS  Google Scholar 

  • Conroy RT, O’Brien M (1974) Proceedings: diurnal variation in athletic performance. J Physiol 236:51P

    CAS  PubMed  Google Scholar 

  • Crockford GW, Davies CT (1969) Circadian variations in responses to submaximal exercise on a bicycle ergometer. J Physiol 201:94P–95P

    CAS  PubMed  Google Scholar 

  • de Goede P, Wefers J, Brombacher EC et al (2018) Circadian rhythms in mitochondrial respiration. J Mol Endocrinol 60:R115–R130

    Article  PubMed  PubMed Central  Google Scholar 

  • DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32:S157–S163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas CM, Hesketh SJ, Esser KA (2021) Time of day and muscle strength: a circadian output? Physiology 36:44–51

    Article  PubMed  Google Scholar 

  • Drust B, Waterhouse J, Atkinson G et al (2005) Circadian rhythms in sports performance--an update. Chronobiol Int 22:21–44

    Article  CAS  PubMed  Google Scholar 

  • Dyar KA, Ciciliot S, Wright LE et al (2014) Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab 3:29–41

    Article  CAS  PubMed  Google Scholar 

  • Dyar KA, Hubert MJ, Mir AA et al (2018a) Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biol 16:e2005886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dyar KA, Lutter D, Artati A et al (2018b) Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell 174:1571–1585.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar DM, Dement WC (1991) Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am J Physiol Integr Comp Physiol 261:R928–R933

    Article  CAS  Google Scholar 

  • Edgar DM, Martin CE, Dement WC (1991) Activity feedback to the mammalian circadian pacemaker: influence on observed measures of rhythm period length. J Biol Rhythm 6:185–199

    Article  CAS  Google Scholar 

  • Ezagouri S, Zwighaft Z, Sobel J et al (2019) Physiological and molecular dissection of daily variance in exercise capacity. Cell Metab 30:78–91.e4

    Article  CAS  PubMed  Google Scholar 

  • Foteinou PT, Venkataraman A, Francey LJ et al (2018) Computational and experimental insights into the circadian effects of SIRT1. Proc Natl Acad Sci U S A 115:11643–11648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funai K, Semenkovich CF (2011) Skeletal muscle lipid flux: running water carries no poison. Am J Physiol Metab 301:E245–E251

    CAS  Google Scholar 

  • Gannon RL, Rea MA (1995) Twelve-hour phase shifts of hamster circadian rhythms elicited by voluntary wheel running. J Biol Rhythm 10:196–210

    Article  CAS  Google Scholar 

  • Harfmann BD, Schroder EA, Kachman MT et al (2016) Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle 6:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodge BA, Wen Y, Riley LA et al (2015) The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skelet Muscle 5:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howlett RA, Parolin ML, Dyck DJ et al (1998) Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am J Phys 275:R418–R425

    CAS  Google Scholar 

  • Indiveri C, Iacobazzi V, Tonazzi A et al (2011) The mitochondrial carnitine/acylcarnitine carrier: function, structure and physiopathology. Mol Asp Med 32:223–233

    Article  CAS  Google Scholar 

  • Ivy JL, Katz AL, Cutler CL et al (1988) Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64:1480–1485

    Article  CAS  PubMed  Google Scholar 

  • Jensen TE, Richter EA (2012) The journal of physiology regulation of glucose and glycogen metabolism during and after exercise. J Physiol 590:1069–1076

    Article  CAS  PubMed  Google Scholar 

  • Jensen J, Rustad PI, Kolnes AJ, Lai Y-C (2011) The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol 2:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordan SD, Kriebs A, Vaughan M et al (2017) CRY1/2 selectively repress PPARδ and limit exercise capacity. Cell Metab 26:243–255.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemler D, Wolff CA, Esser KA (2020) Time-of-day dependent effects of contractile activity on the phase of the skeletal muscle clock. J Physiol 598:3631–3644

    Article  CAS  PubMed  Google Scholar 

  • Kleitman N (1949) Biological rhythms and cycles. Physiol Rev 29:1–30

    Article  CAS  PubMed  Google Scholar 

  • Koike N, Yoo S-H, Huang H-C et al (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Küüsmaa M, Schumann M, Sedliak M et al (2016) Effects of morning versus evening combined strength and endurance training on physical performance, muscle hypertrophy, and serum hormone concentrations. Appl Physiol Nutr Metab 41:1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Lamia KA, Sachdeva UM, DiTacchio L et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leighton B, Kowalchuk JM, Challiss RAJ, Newsholme EA (1988) Circadian rhythm in sensitivity of glucose metabolism to insulin in rat soleus muscle. Am J Physiol Metab 255:E41–E45

    CAS  Google Scholar 

  • Masri S, Sassone-Corsi P (2018) The emerging link between cancer, metabolism, and circadian rhythms. Nat Med 24:1795–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy JJ, Andrews JL, McDearmon EL et al (2007) Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics 31:86–95

    Article  CAS  PubMed  Google Scholar 

  • Miller BH, McDearmon EL, Panda S et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A 104:3342–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirizio GG, Nunes RSM, Vargas DA et al (2020) Time-of-day effects on short-duration maximal exercise performance. Sci Rep 10:9485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore-Ede MC (1986) Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol Integr Comp Physiol 250:R737–R752

    Article  CAS  Google Scholar 

  • Mure LS, Le HD, Benegiamo G et al (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science (80-) 359:eaao0318

    Article  CAS  Google Scholar 

  • Peek CB, Levine DC, Cedernaes J et al (2017) Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab 25:86–92

    Article  CAS  PubMed  Google Scholar 

  • Perrin L, Loizides-Mangold U, Chanon S et al (2018) Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle. elife 7:e34114

    Article  PubMed  PubMed Central  Google Scholar 

  • Persson PB, Bondke Persson A (2019) Circadian rhythms. Acta Physiol 225:e13220

    Article  CAS  Google Scholar 

  • Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. J comp Physiol ? A 106:333–355

    Google Scholar 

  • Pizarro A, Hayer K, Lahens NF, Hogenesch JB (2012) CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res 41:D1009–D1013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramanathan C, Kathale ND, Liu D et al (2018) mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet 14:e1007369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reilly T, Waterhouse J (2009) Sports performance: is there evidence that the body clock plays a role? Eur J Appl Physiol 106:321–332

    Article  PubMed  Google Scholar 

  • Richter EA, Ruderman NB (2009) AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J 418:261–275

    Article  CAS  PubMed  Google Scholar 

  • Saggerson D (2008) Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr 28:253–272

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Basse AL, Schönke M et al (2019) Time of exercise specifies the impact on muscle metabolic pathways and systemic energy homeostasis. Cell Metab 30:92–110.e4

    Article  CAS  PubMed  Google Scholar 

  • Schmidt I, Herpin P (1998) Carnitine Palmitoyltransferase I (CPT I) activity and its regulation by Malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs. J Nutr 128:886–893

    Article  CAS  PubMed  Google Scholar 

  • Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24:345–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder AM, Truong D, Loh DH et al (2012) Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice. J Physiol 590:6213–6226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedliak M, Finni T, Cheng S et al (2009) Effect of time-of-day-specific strength training on muscular hypertrophy in men. J Strength Cond Res 23:2451–2457

    Article  PubMed  Google Scholar 

  • Sedliak M, Zeman M, Buzgó G et al (2018) Morphological, molecular and hormonal adaptations to early morning versus afternoon resistance training. Chronobiol Int 35:450–464

    Article  CAS  PubMed  Google Scholar 

  • Small L, AltıntaÅŸ A, Laker RC et al (2020) Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway. J Physiol 598:5739–5752

    Article  CAS  PubMed  Google Scholar 

  • Souissi N, Gauthier A, Sesboüé B et al (2004) Circadian rhythms in two types of anaerobic cycle leg exercise: force-velocity and 30-s Wingate tests. Int J Sports Med 25:14–19

    Article  CAS  PubMed  Google Scholar 

  • Syamsunarno MRAA, Iso T, Hanaoka H et al (2013) A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting. PLoS One 8:e79386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179

    Article  CAS  PubMed  Google Scholar 

  • Thosar SS, Herzig MX, Roberts SA et al (2018) Lowest perceived exertion in the late morning due to effects of the endogenous circadian system. Br J Sports Med 52:1011–1012

    Article  PubMed  Google Scholar 

  • Tipton CM (2003) Exercise physiology. Springer, New York, New York, NY

    Book  Google Scholar 

  • Um J-H, Pendergast JS, Springer DA et al (2011) AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS One 6:e18450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Moorsel D, Hansen J, Havekes B et al (2016) Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol Metab 5:635–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viijlar-Palasí C, Guinovart JJ (1997) The role of glucose 6-phosphate in the control of glycogen synthase. FASEB J 11:544–558

    Article  Google Scholar 

  • Voigt ED, Engel P, Klein H (1968) On the daily operation of physical work capacity. Int Z Angew Physiol 25:1–12

    CAS  PubMed  Google Scholar 

  • Wahlberg I, Astrand I (1973) Physical work capacity during the day and at night. Work Environ Health 10:65–68

    Google Scholar 

  • Wolff G, Esser KA (2012) Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med Sci Sports Exerc 44:1663–1670

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Tang D, Liu N et al (2017) Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab 25:73–85

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Dang F, Li P et al (2019) The circadian protein Period2 suppresses mTORC1 activity via recruiting Tsc1 to mTORC1 complex. Cell Metab 29:653–667.e6

    Article  CAS  PubMed  Google Scholar 

  • Youngstedt SD, Elliott JA, Kripke DF (2019) Human circadian phase–response curves for exercise. J Physiol 597:2253–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Lahens NF, Ballance HI et al (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci 111:16219–16224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karyn A. Esser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wolff, C.A., Hesketh, S.J., Esser, K.A. (2022). Circadian Rhythms and Exercise Metabolism. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_16

Download citation

Publish with us

Policies and ethics