Skip to main content

Neuroimaging of Concussion

  • Chapter
  • First Online:
Tackling the Concussion Epidemic
  • 600 Accesses

Abstract

Concussion is one of the most prevalent neurological conditions worldwide, and a major health concern, in terms of both the initial effects of injury and potential long-term health consequences. Until relatively recently, our understanding of concussion pathophysiology has been limited and mainly derived from animal models. In recent years, though, with the increasing availability of advanced magnetic resonance imaging (MRI) techniques, there has been a growing body of literature addressing this issue, providing unprecedented insights into the complex physiological changes that are associated with concussion and subsequent recovery. In this chapter, we will survey the current state of knowledge in this rapidly evolving field, including a review of key MRI sequences and how the findings relate to our understanding of concussive injury, recovery, and clinical presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75(Suppl_4):S24–33.

    PubMed  Google Scholar 

  2. McCrory P, Meeuwisse W, Dvorak J, Aubry M, Bailes J, Broglio S, et al. Consensus statement on concussion in sport—The 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838–47.

    PubMed  Google Scholar 

  3. Shenton ME, Hamoda H, Schneiderman J, Bouix S, Pasternak O, Rathi Y, et al. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):137–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Davis PC. Head trauma. Am J Neuroradiol. 2007;28(8):1619–21.

    PubMed  PubMed Central  Google Scholar 

  5. Gallagher CN, Hutchinson PJ, Pickard JD. Neuroimaging in trauma. Curr Opin Neurol. 2007;20(4):403–9.

    PubMed  Google Scholar 

  6. Smits M, Hunink M, Van Rijssel D, Dekker H, Vos P, Kool D, et al. Outcome after complicated minor head injury. Am J Neuroradiol. 2008;29(3):506–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Haacke EM, Xu Y, Cheng YCN, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52(3):612–8.

    PubMed  Google Scholar 

  8. Hughes DG, Jackson A, Mason DL, Berry E, Hollis S, Yates DW. Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery. Neuroradiology. 2004;46(7):550–8.

    PubMed  Google Scholar 

  9. Hofman PA, Stapert SZ, van Kroonenburgh MJ, Jolles J, de Kruijk J, Wilmink JT. MR imaging, single-photon emission CT, and neurocognitive performance after mild traumatic brain injury. Am J Neuroradiol. 2001;22(3):441–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mittl R, Grossman R, Hiehle J, Hurst RW, Kauder DR, Gennarelli TA, et al. Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. Am J Neuroradiol. 1994;15(8):1583–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee H, Wintermark M, Gean AD, Ghajar J, Manley GT, Mukherjee P. Focal lesions in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3T MRI. J Neurotrauma. 2008;25(9):1049–56.

    PubMed  Google Scholar 

  12. Iverson GL. Complicated vs uncomplicated mild traumatic brain injury: acute neuropsychological outcome. Brain Inj. 2006;20(13–14):1335–44.

    PubMed  Google Scholar 

  13. Povlishock JT, CHRISTMAN CW. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma. 1995;12(4):555–64.

    CAS  PubMed  Google Scholar 

  14. Kou Z, VandeVord PJ. Traumatic white matter injury and glial activation: from basic science to clinics. Glia. 2014;62(11):1831–55.

    PubMed  Google Scholar 

  15. Sullivan DR. A cerebrovascular hypothesis of neurodegeneration in mTBI. J Head Trauma Rehabil. 2019;34(3):E18.

    PubMed  PubMed Central  Google Scholar 

  16. Milman A, Rosenberg A, Weizman R, Pick C. Mild traumatic brain injury induces persistent cognitive deficits and behavioral disturbances in mice. J Neurotrauma. 2005;22(9):1003–10.

    CAS  PubMed  Google Scholar 

  17. Povlishock J, Erb D, Astruc J. Axonal response to traumatic brain injury: reactive axonal change, deafferentation, and neuroplasticity. J Neurotrauma. 1992;9:S189–200.

    PubMed  Google Scholar 

  18. Dean PJ, Sato JR, Vieira G, McNamara A, Sterr A. Long-term structural changes after mTBI and their relation to post-concussion symptoms. Brain Inj. 2015;29(10):1211–8.

    PubMed  Google Scholar 

  19. Churchill N, Hutchison M, Richards D, Leung G, Graham S, Schweizer TA. Brain structure and function associated with a history of sport concussion: a multi-modal magnetic resonance imaging study. J Neurotrauma. 2017;34(4):765–71.

    PubMed  Google Scholar 

  20. Singh R, Meier TB, Kuplicki R, Savitz J, Mukai I, Cavanagh L, et al. Relationship of collegiate football experience and concussion with hippocampal volume and cognitive outcomes. JAMA. 2014;311(18):1883–8.

    CAS  PubMed  Google Scholar 

  21. Meier TB, Bellgowan PS, Bergamino M, Ling JM, Mayer AR. Thinner cortex in collegiate football players with, but not without, a self-reported history of concussion. J Neurotrauma. 2016;33(4):330–8.

    PubMed  PubMed Central  Google Scholar 

  22. Sidaros A, Skimminge A, Liptrot MG, Sidaros K, Engberg AW, Herning M, et al. Long-term global and regional brain volume changes following severe traumatic brain injury: a longitudinal study with clinical correlates. NeuroImage. 2009;44(1):1–8.

    PubMed  Google Scholar 

  23. Bendlin BB, Ries ML, Lazar M, Alexander AL, Dempsey RJ, Rowley HA, et al. Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. NeuroImage. 2008;42(2):503–14.

    PubMed  Google Scholar 

  24. Zhou Y, Kierans A, Kenul D, Ge Y, Rath J, Reaume J, et al. Mild traumatic brain injury: longitudinal regional brain volume changes. Radiology. 2013;267(3):880–90.

    PubMed  PubMed Central  Google Scholar 

  25. Graham D, Gennarelli T, McIntosh T. Trauma. Greenfield’s neuropathology. New York: Oxford University Press; 2002.

    Google Scholar 

  26. Control CD. Prevention. National Football League players mortality study. Cincinnati: NIOSH; 1994.

    Google Scholar 

  27. Gavett BE, Stern RA, Cantu RC, Nowinski CJ, McKee AC. Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimers Res Ther. 2010;2(3):18.

    PubMed  PubMed Central  Google Scholar 

  28. Lehman EJ, Hein MJ, Baron SL, Gersic CM. Neurodegenerative causes of death among retired National Football League players. Neurology. 2012;79(19):1970–4.

    PubMed  PubMed Central  Google Scholar 

  29. Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-variance between human brain regions. Nat Rev Neurosci. 2013;14(5):322–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang C, Zhao L, Luo Y, Liu J, Miao P, Wei S, et al. Structural covariance in subcortical stroke patients measured by automated MRI-based volumetry. Neuroimage Clin. 2019;22:101682.

    PubMed  PubMed Central  Google Scholar 

  31. Novellino F, López ME, Vaccaro MG, Miguel Y, Delgado ML, Maestu F. Association between hippocampus, thalamus, and caudate in mild cognitive impairment APOEε4 carriers: a structural covariance MRI study. Front Neurol. 2019;10:1303.

    PubMed  PubMed Central  Google Scholar 

  32. Ommaya AK, Gennarelli T. Cerebral concussion and traumatic unconsciousness: correlation of experimental and clinical observations on blunt head injuries. Brain. 1974;97(4):633–54.

    CAS  PubMed  Google Scholar 

  33. Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: clues to axon and myelin repair capacity. Exp Neurol. 2016;275:328–33.

    CAS  PubMed  Google Scholar 

  34. Song S-K, Sun S-W, Ju W-K, Lin S-J, Cross AH, Neufeld AH. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage. 2003;20(3):1714–22.

    PubMed  Google Scholar 

  35. Song S-K, Yoshino J, Le TQ, Lin S-J, Sun S-W, Cross AH, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage. 2005;26(1):132–40.

    PubMed  Google Scholar 

  36. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29.

    PubMed  PubMed Central  Google Scholar 

  37. Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM. White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain. 2007;130(10):2508–19.

    PubMed  Google Scholar 

  38. Churchill NW, Hutchison MG, Richards D, Leung G, Graham SJ, Schweizer TA. The first week after concussion: blood flow, brain function and white matter microstructure. Neuroimage Clin. 2017;14:480–9.

    PubMed  PubMed Central  Google Scholar 

  39. Murugavel M, Cubon V, Putukian M, Echemendia R, Cabrera J, Osherson D, et al. A longitudinal diffusion tensor imaging study assessing white matter fiber tracts after sports-related concussion. J Neurotrauma. 2014;31(22):1860–71.

    PubMed  PubMed Central  Google Scholar 

  40. Churchill NW, Hutchison MG, Richards D, Leung G, Graham SJ, Schweizer TA. Neuroimaging of sport concussion: persistent alterations in brain structure and function at medical clearance. Sci Rep. 2017;7(1):8297.

    PubMed  PubMed Central  Google Scholar 

  41. Inglese M, Makani S, Johnson G, Cohen BA, Silver JA, Gonen O, et al. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg. 2005;103(2):298–303.

    PubMed  Google Scholar 

  42. Unterberg A, Stover J, Kress B, Kiening K. Edema and brain trauma. Neuroscience. 2004;129(4):1019–27.

    Google Scholar 

  43. Marmarou A. A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus. 2007;22(5):1–10.

    Google Scholar 

  44. Barzó P, Marmarou A, Fatouros P, Hayasaki K, Corwin F. Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg. 1997;87(6):900–7.

    PubMed  Google Scholar 

  45. Streit WJ, Mrak RE, Griffin WST. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1(1):14.

    PubMed  PubMed Central  Google Scholar 

  46. Wilde E, McCauley S, Hunter J, Bigler E, Chu Z, Wang Z, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology. 2008;70(12):948–55.

    CAS  PubMed  Google Scholar 

  47. Mayer A, Ling J, Mannell M, Gasparovic C, Phillips J, Doezema D, et al. A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology. 2010;74(8):643–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Meier TB, Bergamino M, Bellgowan PS, Teague T, Ling JM, Jeromin A, et al. Longitudinal assessment of white matter abnormalities following sports-related concussion. Hum Brain Mapp. 2016;37(2):833–45.

    PubMed  Google Scholar 

  49. Henry LC, Tremblay J, Tremblay S, Lee A, Brun C, Lepore N, et al. Acute and chronic changes in diffusivity measures after sports concussion. J Neurotrauma. 2011;28(10):2049–59.

    PubMed  Google Scholar 

  50. Patterson ZR, Holahan MR. Understanding the neuroinflammatory response following concussion to develop treatment strategies. Front Cell Neurosci. 2012;6:58.

    PubMed  PubMed Central  Google Scholar 

  51. Marchi N, Bazarian JJ, Puvenna V, Janigro M, Ghosh C, Zhong J, et al. Consequences of repeated blood-brain barrier disruption in football players. PLoS One. 2013;8(3):e56805.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Di Battista AP, Rhind SG, Richards D, Churchill N, Baker AJ, Hutchison MG. Altered blood biomarker profiles in athletes with a history of repetitive head impacts. PLoS One. 2016;11(7):e0159929.

    PubMed  PubMed Central  Google Scholar 

  53. Tomaszczyk JC, Green NL, Frasca D, Colella B, Turner GR, Christensen BK, et al. Negative neuroplasticity in chronic traumatic brain injury and implications for neurorehabilitation. Neuropsychol Rev. 2014;24(4):409–27.

    PubMed  PubMed Central  Google Scholar 

  54. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Mapping recovery of brain physiology after concussion: from acute injury to one year after medical clearance. Neurology. 2019;93(21):e1980–92.

    PubMed  PubMed Central  Google Scholar 

  55. Smits M, Houston GC, Dippel DW, Wielopolski PA, Vernooij MW, Koudstaal PJ, et al. Microstructural brain injury in post-concussion syndrome after minor head injury. Neuroradiology. 2011;53(8):553–63.

    PubMed  Google Scholar 

  56. Messé A, Caplain S, Paradot G, Garrigue D, Mineo JF, Soto Ares G, et al. Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Hum Brain Mapp. 2011;32(6):999–1011.

    PubMed  Google Scholar 

  57. Cubon V, Putukian M, Boyer C, Dettwiler A. A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. J Neurotrauma. 2011;28(2):189–201.

    PubMed  PubMed Central  Google Scholar 

  58. Lange RT, Iverson GL, Brubacher JR, Mädler B, Heran MK. Diffusion tensor imaging findings are not strongly associated with postconcussional disorder 2 months following mild traumatic brain injury. J Head Trauma Rehabil. 2012;27(3):188–98.

    PubMed  Google Scholar 

  59. Lipton ML, Gulko E, Zimmerman ME, Friedman BW, Kim M, Gellella E, et al. Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology. 2009;252(3):816–24.

    PubMed  Google Scholar 

  60. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53(6):1432–40.

    PubMed  Google Scholar 

  61. Zhang H, Schneider T, Wheeler-Kingshott C, Alexander D. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012;61(4):1000–16.

    PubMed  Google Scholar 

  62. Churchill NW, Caverzasi E, Graham SJ, Hutchison MG, Schweizer TA. White matter during concussion recovery: comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Hum Brain Mapp. 2019;40(6):1908–18.

    PubMed  Google Scholar 

  63. Katayama Y, Becker DP, Tamura T, Hovda DA. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg. 1990;73(6):889–900.

    CAS  PubMed  Google Scholar 

  64. Nilsson P, Hillered L, Ponten U, Ungerstedt U. Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab. 1990;10(5):631–7.

    CAS  PubMed  Google Scholar 

  65. Faden AI, Loane DJ. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics. 2015;12(1):143–50.

    CAS  PubMed  Google Scholar 

  66. Witgen B, Lifshitz J, Smith M, Schwarzbach E, Liang S-L, Grady M, et al. Regional hippocampal alteration associated with cognitive deficit following experimental brain injury: a systems, network and cellular evaluation. Neuroscience. 2005;133(1):1–15.

    CAS  PubMed  Google Scholar 

  67. Sick TJ, Pérez-Pinzón MA, Feng Z-Z. Impaired expression of long-term potentiation in hippocampal slices 4 and 48 h following mild fluid-percussion brain injury in vivo. Brain Res. 1998;785(2):287–92.

    CAS  PubMed  Google Scholar 

  68. Scheibel RS, Newsome MR, Steinberg JL, Pearson DA, Rauch RA, Mao H, et al. Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. Neurorehabil Neural Repair. 2007;21(1):36–45.

    PubMed  Google Scholar 

  69. Perlstein WM, Cole MA, Demery JA, Seignourel PJ, Dixit NK, Larson MJ, et al. Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. J Int Neuropsychol Soc. 2004;10(5):724–41.

    PubMed  Google Scholar 

  70. Palacios EM, Sala-Llonch R, Junque C, Roig T, Tormos JM, Bargallo N, et al. White matter integrity related to functional working memory networks in traumatic brain injury. Neurology. 2012;78(12):852–60.

    CAS  PubMed  Google Scholar 

  71. McAllister TW, Saykin A, Flashman L, Sparling M, Johnson S, Guerin S, et al. Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology. 1999;53(6):1300. https://doi.org/10.1212/WNL.53.6.1300.

    Article  CAS  PubMed  Google Scholar 

  72. McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. NeuroImage. 2001;14(5):1004–12.

    CAS  PubMed  Google Scholar 

  73. McAllister TW, Flashman LA, McDonald BC, Saykin AJ. Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. J Neurotrauma. 2006;23(10):1450–67.

    PubMed  Google Scholar 

  74. Medaglia JD. Functional neuroimaging in traumatic brain injury: from nodes to networks. Front Neurol. 2017;8:407.

    PubMed  PubMed Central  Google Scholar 

  75. Hillary FG. Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. J Int Neuropsychol Soc. 2008;14(4):526–34.

    PubMed  Google Scholar 

  76. Bryer E, Medaglia J, Rostami S, Hillary FG. Neural recruitment after mild traumatic brain injury is task dependent: a meta-analysis. J Int Neuropsychol Soc. 2013;19(7):751.

    CAS  PubMed  Google Scholar 

  77. Slobounov SM, Zhang K, Pennell D, Ray W, Johnson B, Sebastianelli W. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Exp Brain Res. 2010;202(2):341–54.

    PubMed  Google Scholar 

  78. Zhang K, Johnson B, Pennell D, Ray W, Sebastianelli W, Slobounov S. Are functional deficits in concussed individuals consistent with white matter structural alterations: combined FMRI & DTI study. Exp Brain Res. 2010;204(1):57–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mayer AR, Mannell MV, Ling J, Elgie R, Gasparovic C, Phillips JP, et al. Auditory orienting and inhibition of return in mild traumatic brain injury: a FMRI study. Hum Brain Mapp. 2009;30(12):4152–66.

    PubMed  PubMed Central  Google Scholar 

  80. Witt ST, Lovejoy DW, Pearlson GD, Stevens MC. Decreased prefrontal cortex activity in mild traumatic brain injury during performance of an auditory oddball task. Brain Imaging Behav. 2010;4(3–4):232–47.

    PubMed  Google Scholar 

  81. Mayer AR, Yang Z, Yeo RA, Pena A, Ling JM, Mannell MV, et al. A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging Behav. 2012;6(2):343–54.

    PubMed  Google Scholar 

  82. Lovell MR, Pardini JE, Welling J, Collins MW, Bakal J, Lazar N, et al. Functional brain abnormalities are related to clinical recovery and time to return-to-play in athletes. Neurosurgery. 2007;61(2):352–60.

    PubMed  Google Scholar 

  83. Dettwiler A, Murugavel M, Putukian M, Cubon V, Furtado J, Osherson D. Persistent differences in patterns of brain activation after sports-related concussion: a longitudinal functional magnetic resonance imaging study. J Neurotrauma. 2014;31(2):180–8.

    PubMed  PubMed Central  Google Scholar 

  84. Hammeke TA, McCrea M, Coats SM, Verber MD, Durgerian S, Flora K, et al. Acute and subacute changes in neural activation during the recovery from sport-related concussion. J Int Neuropsychol Soc. 2013;19(8):863.

    PubMed  Google Scholar 

  85. Johnson B, Hallett M, Slobounov S. Follow-up evaluation of oculomotor performance with fMRI in the subacute phase of concussion. Neurology. 2015;85(13):1163–6.

    PubMed  PubMed Central  Google Scholar 

  86. Elbin R, Covassin T, Hakun J, Kontos AP, Berger K, Pfeiffer K, et al. Do brain activation changes persist in athletes with a history of multiple concussions who are asymptomatic? Brain Inj. 2012;26(10):1217–25.

    CAS  PubMed  Google Scholar 

  87. Terry DP, Faraco CC, Smith D, Diddams MJ, Puente AN, Miller LS. Lack of long-term fMRI differences after multiple sports-related concussions. Brain Inj. 2012;26(13–14):1684–96.

    PubMed  Google Scholar 

  88. Chen J-K, Johnston KM, Petrides M, Ptito A. Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Arch Gen Psychiatry. 2008;65(1):81–9.

    PubMed  Google Scholar 

  89. Chen J-K, Johnston K, Frey S, Petrides M, Worsley K, Ptito A. Functional abnormalities in symptomatic concussed athletes: an fMRI study. NeuroImage. 2004;22(1):68–82.

    PubMed  Google Scholar 

  90. Chen J-K, Johnston KM, Collie A, McCrory P, Ptito A. A validation of the post concussion symptom scale in the assessment of complex concussion using cognitive testing and functional MRI. J Neurol Neurosurg Psychiatry. 2007;78(11):1231–8.

    PubMed  PubMed Central  Google Scholar 

  91. Chen J-K, Johnston KM, Petrides M, Ptito A. Recovery from mild head injury in sports: evidence from serial functional magnetic resonance imaging studies in male athletes. Clin J Sport Med. 2008;18(3):241–7.

    PubMed  Google Scholar 

  92. Smits M, Dippel DW, Houston GC, Wielopolski PA, Koudstaal PJ, Hunink MM, et al. Postconcussion syndrome after minor head injury: brain activation of working memory and attention. Hum Brain Mapp. 2009;30(9):2789–803.

    PubMed  Google Scholar 

  93. Badaut J, Bix G. Vascular neural network phenotypic transformation after traumatic injury: potential role in long-term sequelae. Transl Stroke Res. 2014;5(3):394–406.

    CAS  PubMed  Google Scholar 

  94. Hoge RD. Calibrated fMRI. NeuroImage. 2012;62(2):930–7.

    PubMed  Google Scholar 

  95. Gosselin N, Bottari C, Chen J-K, Petrides M, Tinawi S, de Guise E, et al. Electrophysiology and functional MRI in post-acute mild traumatic brain injury. J Neurotrauma. 2011;28(3):329–41.

    PubMed  Google Scholar 

  96. Bergsneider M, Hovda DA, McArthur DL, Etchepare M, Huang S-C, Sehati N, et al. Metabolic recovery following human traumatic brain injury based on FDG-PET: time course and relationship to neurological disability. J Head Trauma Rehabil. 2001;16(2):135–48.

    CAS  PubMed  Google Scholar 

  97. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.

    CAS  PubMed  Google Scholar 

  98. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci. 2011;23(12):4022–37.

    PubMed  PubMed Central  Google Scholar 

  99. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci. 2009;106(31):13040–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tagliazucchi E, Laufs H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron. 2014;82(3):695–708.

    CAS  PubMed  Google Scholar 

  101. Sharp DJ, Beckmann CF, Greenwood R, Kinnunen KM, Bonnelle V, De Boissezon X, et al. Default mode network functional and structural connectivity after traumatic brain injury. Brain. 2011;134(8):2233–47.

    PubMed  Google Scholar 

  102. Hillary FG, Rajtmajer SM, Roman CA, Medaglia JD, Slocomb-Dluzen JE, Calhoun VD, et al. The rich get richer: brain injury elicits hyperconnectivity in core subnetworks. PLoS One. 2014;9(8):e104021.

    PubMed  PubMed Central  Google Scholar 

  103. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33(3):279–96.

    PubMed  Google Scholar 

  104. Iraji A, Benson RR, Welch RD, O'Neil BJ, Woodard JL, Ayaz SI, et al. Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed-based analyses. J Neurotrauma. 2015;32(14):1031–45.

    PubMed  PubMed Central  Google Scholar 

  105. Johnson B, Zhang K, Gay M, Horovitz S, Hallett M, Sebastianelli W, et al. Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. NeuroImage. 2012;59(1):511–8.

    PubMed  Google Scholar 

  106. Zhu D, Covassin T, Nogle S, Doyle S, Russell D, Pearson R, et al. A potential biomarker in sports-related concussion: brain functional connectivity alteration of the default-mode network measured with longitudinal resting-State fMRI over thirty days. J Neurotrauma. 2015;32(5):327–41.

    PubMed  Google Scholar 

  107. Hillary FG, Grafman JH. Injured brains and adaptive networks: the benefits and costs of hyperconnectivity. Trends Cogn Sci. 2017;21(5):385–401.

    PubMed  PubMed Central  Google Scholar 

  108. McCuddy WT, España LY, Nelson LD, Birn RM, Mayer AR, Meier TB. Association of acute depressive symptoms and functional connectivity of emotional processing regions following sport-related concussion. Neuroimage Clin. 2018;19:434–42.

    PubMed  PubMed Central  Google Scholar 

  109. Newsome MR, Li X, Lin X, Wilde EA, Ott S, Biekman B, et al. Functional connectivity is altered in concussed adolescent athletes despite medical clearance to return to play: a preliminary report. Front Neurol. 2016;7:116.

    PubMed  PubMed Central  Google Scholar 

  110. Czerniak SM, Sikoglu EM, Navarro AAL, McCafferty J, Eisenstock J, Stevenson JH, et al. A resting state functional magnetic resonance imaging study of concussion in collegiate athletes. Brain Imaging Behav. 2015;9(2):323–32.

    PubMed  PubMed Central  Google Scholar 

  111. Churchill N, Hutchison MG, Leung G, Graham S, Schweizer TA. Changes in functional connectivity of the brain associated with a history of sport concussion: a preliminary investigation. Brain Inj. 2017;31(1):39–48.

    PubMed  Google Scholar 

  112. Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, et al. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012;265(3):882–92.

    PubMed  PubMed Central  Google Scholar 

  113. Mayer AR, Mannell MV, Ling J, Gasparovic C, Yeo RA. Functional connectivity in mild traumatic brain injury. Hum Brain Mapp. 2011;32(11):1825–35.

    PubMed  PubMed Central  Google Scholar 

  114. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Connectomic markers of symptom severity in sport-related concussion: whole-brain analysis of resting-state fMRI. Neuroimage Clin. 2018;18:518–26.

    PubMed  PubMed Central  Google Scholar 

  115. van der Horn HJ, Liemburg EJ, Aleman A, Spikman JM, van der Naalt J. Brain networks subserving emotion regulation and adaptation after mild traumatic brain injury. J Neurotrauma. 2016;33(1):1–9.

    PubMed  Google Scholar 

  116. Messé A, Caplain S, Pélégrini-Issac M, Blancho S, Lévy R, Aghakhani N, et al. Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PLoS One. 2013;8(6):e65470.

    PubMed  PubMed Central  Google Scholar 

  117. Sours C, Zhuo J, Janowich J, Aarabi B, Shanmuganathan K, Gullapalli RP. Default mode network interference in mild traumatic brain injury–a pilot resting state study. Brain Res. 2013;1537:201–15.

    CAS  PubMed  Google Scholar 

  118. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52(3):1059–69.

    PubMed  Google Scholar 

  119. Han K, Mac Donald CL, Johnson AM, Barnes Y, Wierzechowski L, Zonies D, et al. Disrupted modular organization of resting-state cortical functional connectivity in US military personnel following concussive ‘mild’ blast-related traumatic brain injury. NeuroImage. 2014;84:76–96.

    PubMed  Google Scholar 

  120. Pandit AS, Expert P, Lambiotte R, Bonnelle V, Leech R, Turkheimer FE, et al. Traumatic brain injury impairs small-world topology. Neurology. 2013;80(20):1826–33.

    PubMed  PubMed Central  Google Scholar 

  121. van der Horn HJ, Liemburg EJ, Scheenen ME, de Koning ME, Spikman JM, van der Naalt J. Graph analysis of functional brain networks in patients with mild traumatic brain injury. PLoS One. 2017;12(1):e0171031.

    PubMed  PubMed Central  Google Scholar 

  122. Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102–16.

    PubMed  Google Scholar 

  123. Yamakami I, McIntosh TK. Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres. J Cereb Blood Flow Metab. 1989;9(1):117–24.

    CAS  PubMed  Google Scholar 

  124. Yuan X-Q, Prough DS, Smith TL, DeWitt DS. The effects of traumatic brain injury on regional cerebral blood flow in rats. J Neurotrauma. 1988;5(4):289–301.

    CAS  PubMed  Google Scholar 

  125. Ginsberg M, Zhao W, Alonso O, Loor-Estades J, Dietrich WD, Busto R. Uncoupling of local cerebral glucose metabolism and blood flow after acute fluid-percussion injury in rats. Am J Phys Heart Circ Phys. 1997;272(6):H2859–H68.

    CAS  Google Scholar 

  126. Wang CX, Shuaib A. Critical role of microvasculature basal lamina in ischemic brain injury. Prog Neurobiol. 2007;83(3):140–8.

    CAS  PubMed  Google Scholar 

  127. Abdul-Muneer P, Schuetz H, Wang F, Skotak M, Jones J, Gorantla S, et al. Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med. 2013;60:282–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Abdul-Muneer P, Chandra N, Haorah J. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol. 2015;51(3):966–79.

    CAS  PubMed  Google Scholar 

  129. Menon DK. Brain ischaemia after traumatic brain injury: lessons from 15O2 positron emission tomography. Curr Opin Crit Care. 2006;12(2):85–9.

    PubMed  Google Scholar 

  130. Meier TB, Bellgowan PS, Singh R, Kuplicki R, Polanski DW, Mayer AR. Recovery of cerebral blood flow following sports-related concussion. JAMA Neurol. 2015;72(5):530–8.

    PubMed  Google Scholar 

  131. Wang Y, Nelson LD, LaRoche AA, Pfaller AY, Nencka AS, Koch KM, et al. Cerebral blood flow alterations in acute sport-related concussion. J Neurotrauma. 2016;33(13):1227–36.

    PubMed  PubMed Central  Google Scholar 

  132. Truettner JS, Alonso OF, Dietrich WD. Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J Cereb Blood Flow Metab. 2005;25(11):1505–16.

    CAS  PubMed  Google Scholar 

  133. Jünger EC, Newell DW, Grant GA, Avellino AM, Ghatan S, Douville CM, et al. Cerebral autoregulation following minor head injury. J Neurosurg. 1997;86(3):425–32.

    PubMed  Google Scholar 

  134. Strebel S, Lam AM, Matta BF, Newell DW. Impaired cerebral autoregulation after mild brain injury. Surg Neurol. 1997;47(2):128–31.

    CAS  PubMed  Google Scholar 

  135. Wang Y, West JD, Bailey JN, Westfall DR, Xiao H, Arnold TW, et al. Decreased cerebral blood flow in chronic pediatric mild TBI: an MRI perfusion study. Dev Neuropsychol. 2015;40(1):40–4.

    PubMed  PubMed Central  Google Scholar 

  136. Ge Y, Patel MB, Chen Q, Grossman EJ, Zhang K, Miles L, et al. Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T. Brain Inj. 2009;23(7–8):666–74.

    PubMed  Google Scholar 

  137. Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005;493(1):154–66.

    PubMed  Google Scholar 

  138. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Symptom correlates of cerebral blood flow following acute concussion. Neuroimage Clin. 2017;16:234–9.

    PubMed  PubMed Central  Google Scholar 

  139. Lin C-M, Tseng Y-C, Hsu H-L, Chen C-J, Chen DY-T, Yan F-X, et al. Arterial spin labeling perfusion study in the patients with subacute mild traumatic brain injury. PLoS One. 2016;11(2):e0149109.

    PubMed  PubMed Central  Google Scholar 

  140. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99(1):4–9.

    CAS  PubMed  Google Scholar 

  141. Len TK, Neary JP, Asmundson GJ, Goodman DG, Bjornson B, Bhambhani YN. Cerebrovascular reactivity impairment after sport-induced concussion. Med Sci Sports Exerc. 2011;43(12):2241–8.

    PubMed  Google Scholar 

  142. Kety SS, Schmidt CF. The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest. 1946;25(1):107–19.

    PubMed  PubMed Central  Google Scholar 

  143. Kassner A, Roberts TP. Beyond perfusion: cerebral vascular reactivity and assessment of microvascular permeability. Top Magn Reson Imaging. 2004;15(1):58–65.

    PubMed  Google Scholar 

  144. Urback AL, MacIntosh BJ, Goldstein BI. Cerebrovascular reactivity measured by functional magnetic resonance imaging during breath-hold challenge: a systematic review. Neurosci Biobehav Rev. 2017;79:27–47.

    PubMed  Google Scholar 

  145. Spano VR, Mandell DM, Poublanc J, Sam K, Battisti-Charbonney A, Pucci O, et al. CO2 blood oxygen level–dependent MR mapping of cerebrovascular reserve in a clinical population: safety, tolerability, and technical feasibility. Radiology. 2013;266(2):592–8.

    PubMed  Google Scholar 

  146. Sobczyk O, Battisti-Charbonney A, Poublanc J, Crawley AP, Sam K, Fierstra J, et al. Assessing cerebrovascular reactivity abnormality by comparison to a reference atlas. J Cereb Blood Flow Metab. 2015;35(2):213–20.

    PubMed  Google Scholar 

  147. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Evaluating cerebrovascular reactivity during the early symptomatic phase of sport concussion. J Neurotrauma. 2019;36:1518–25.

    PubMed  Google Scholar 

  148. Churchill N, Hutchison M, Graham S, Schweizer T. Cerebrovascular reactivity after sport concussion: from acute injury to one year after medical clearance. Front Neurol. 2020;11:558. https://doi.org/10.3389/fneur.2020.00558.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Moffett JR, Arun P, Ariyannur PS, Namboodiri AM. N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Front Neuroenerg. 2013;5:11.

    CAS  Google Scholar 

  150. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107–213.

    CAS  PubMed  Google Scholar 

  151. Miller BL, Changl L, Booth R, Ernst T, Cornford M, Nikas D, et al. In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci. 1996;58(22):1929–35.

    CAS  PubMed  Google Scholar 

  152. Haris M, Cai K, Singh A, Hariharan H, Reddy R. In vivo mapping of brain myo-inositol. NeuroImage. 2011;54(3):2079–85.

    CAS  PubMed  Google Scholar 

  153. Garnett MR, Blamire AM, Corkill RG, Cadoux-Hudson TA, Rajagopalan B, Styles P. Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain. 2000;123(10):2046–54.

    PubMed  Google Scholar 

  154. Vagnozzi R, Signoretti S, Tavazzi B, Floris R, Ludovici A, Marziali S, et al. Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes—Part III. Neurosurgery. 2008;62(6):1286–96.

    PubMed  Google Scholar 

  155. Vagnozzi R, Tavazzi B, Signoretti S, Amorini AM, Belli A, Cimatti M, et al. Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment—Part I. Neurosurgery. 2007;61(2):379–89.

    PubMed  Google Scholar 

  156. Henry LC, Tremblay S, Leclerc S, Khiat A, Boulanger Y, Ellemberg D, et al. Metabolic changes in concussed American football players during the acute and chronic post-injury phases. BMC Neurol. 2011;11(1):105.

    PubMed  PubMed Central  Google Scholar 

  157. Chamard E, Théoret H, Skopelja EN, Forwell LA, Johnson AM, Echlin PS. A prospective study of physician-observed concussion during a varsity university hockey season: metabolic changes in ice hockey players. Part 4 of 4. Neurosurg Focus. 2012;33(6):E4.

    PubMed  Google Scholar 

  158. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Neurometabolites and sport-related concussion: from acute injury to one year after medical clearance. Neuroimage Clin. 2020;27:102258.

    PubMed  PubMed Central  Google Scholar 

  159. Gasparovic C, Yeo R, Mannell M, Ling J, Elgie R, Phillips J, et al. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H–magnetic resonance spectroscopy study. J Neurotrauma. 2009;26(10):1635–43.

    PubMed  PubMed Central  Google Scholar 

  160. Lin A, Tran T, Bluml S, Merugumala S, Liao H-J, Ross BD. Guidelines for acquiring and reporting clinical neurospectroscopy. Semin Neurol. 2012;32(05):557–8.

    Google Scholar 

  161. Vink R, Golding EM, Williams JP, McIntosh TK. Blood glucose concentration does not affect outcome in brain trauma: a 31P MRS study. J Cereb Blood Flow Metab. 1997;17(1):50–3.

    CAS  PubMed  Google Scholar 

  162. Vink R, McIntosh TK, Weiner MW, Faden AI. Effects of traumatic brain injury on cerebral high-energy phosphates and pH: a 31P magnetic resonance spectroscopy study. J Cereb Blood Flow Metab. 1987;7(5):563–71.

    CAS  PubMed  Google Scholar 

  163. Kroshus E, Baugh CM, Stein CJ, Austin SB, Calzo JP. Concussion reporting, sex, and conformity to traditional gender norms in young adults. J Adolesc. 2017;54:110–9.

    PubMed  Google Scholar 

  164. Foster CA, D’Lauro C, Johnson BR. Pilots and athletes: different concerns, similar concussion non-disclosure. PLoS One. 2019;14(5):e0215030.

    PubMed  PubMed Central  Google Scholar 

  165. Rawlins MLW, Johnson BR, Register-Mihalik JK, DeAngelis K, Schmidt JD, D’Lauro CJ. United States Air Force Academy cadets’ perceived costs of concussion disclosure. Mil Med. 2020;185(1–2):e269–e75.

    PubMed  Google Scholar 

  166. Leddy JJ, Sandhu H, Sodhi V, Baker JG, Willer B. Rehabilitation of concussion and post-concussion syndrome. Sports Health. 2012;4(2):147–54.

    PubMed  PubMed Central  Google Scholar 

  167. Kamins J, Bigler E, Covassin T, Henry L, Kemp S, Leddy JJ, et al. What is the physiological time to recovery after concussion? A systematic review. Br J Sports Med. 2017;51(12):935–40.

    PubMed  Google Scholar 

  168. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14(5):365–76.

    CAS  PubMed  Google Scholar 

  169. Yue JK, Vassar MJ, Lingsma HF, Cooper SR, Okonkwo DO, Valadka AB, et al. Transforming research and clinical knowledge in traumatic brain injury pilot: multicenter implementation of the common data elements for traumatic brain injury. J Neurotrauma. 2013;30(22):1831–44.

    PubMed  PubMed Central  Google Scholar 

  170. Maas AI, Menon DK, Steyerberg EW, Citerio G, Lecky F, Manley GT, et al. Collaborative European NeuroTrauma effectiveness research in traumatic brain injury (CENTER-TBI) a prospective longitudinal observational study. Neurosurgery. 2015;76(1):67–80.

    PubMed  Google Scholar 

  171. Broglio SP, McCrea M, McAllister T, Harezlak J, Katz B, Hack D, et al. A national study on the effects of concussion in collegiate athletes and US military service academy members: the NCAA–DoD concussion assessment, research and education (CARE) consortium structure and methods. Sports Med. 2017;47(7):1437–51.

    PubMed  PubMed Central  Google Scholar 

  172. Rosenbaum SB, Lipton ML. Embracing chaos: the scope and importance of clinical and pathological heterogeneity in mTBI. Brain Imaging Behav. 2012;6(2):255–82.

    PubMed  Google Scholar 

  173. Hsu H-L, Chen DY-T, Tseng Y-C, Kuo Y-S, Huang Y-L, Chiu W-T, et al. Sex differences in working memory after mild traumatic brain injury: a functional MR imaging study. Radiology. 2015;276(3):828–35.

    PubMed  Google Scholar 

  174. Wilke S, Prehn K, Taud B, List J, Flöel A. Multimodal assessment of recurrent mTBI across the lifespan. J Clin Med. 2018;7(5):95.

    PubMed Central  Google Scholar 

  175. Jantzen KJ, Anderson B, Steinberg FL, Kelso JS. A prospective functional MR imaging study of mild traumatic brain injury in college football players. Am J Neuroradiol. 2004;25(5):738–45.

    PubMed  PubMed Central  Google Scholar 

  176. Pasternak O, Koerte IK, Bouix S, Fredman E, Sasaki T, Mayinger M, et al. Hockey Concussion Education Project, Part 2. Microstructural white matter alterations in acutely concussed ice hockey players: a longitudinal free-water MRI study. J Neurosurg. 2014;120(4):873–81.

    PubMed  PubMed Central  Google Scholar 

  177. Wright AD, Jarrett M, Vavasour I, Shahinfard E, Kolind S, van Donkelaar P, et al. Myelin water fraction is transiently reduced after a single mild traumatic brain injury–A prospective cohort study in collegiate hockey players. PLoS One. 2016;11(2):e0150215.

    PubMed  PubMed Central  Google Scholar 

  178. Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Baseline vs. cross-sectional MRI of concussion: distinct brain patterns in white matter and cerebral blood flow. Sci Rep. 2020;10(1):1–13.

    Google Scholar 

  179. Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafò MR, et al. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat Rev Neurosci. 2017;18(2):115.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Churchill, N.W. (2022). Neuroimaging of Concussion. In: Schweizer, T.A., Baker, A.J. (eds) Tackling the Concussion Epidemic. Springer, Cham. https://doi.org/10.1007/978-3-030-93813-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93813-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93812-3

  • Online ISBN: 978-3-030-93813-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics