Skip to main content

Reversible DC Electric Field Modification of Optical Properties of CdTe Nanocrystals

  • Chapter
  • First Online:
Progress in Nanoscale and Low-Dimensional Materials and Devices

Part of the book series: Topics in Applied Physics ((TAP,volume 144))

Abstract

Modifiable nonlinear optical properties have the potential for innovative device applications. Quantum dot systems have an energy level system that is modified under external electric fields, modifying their optical properties. The matrix surrounding the quantum dot systems influences this optical modification. In this work absorption spectra of cadmium telluride quantum dot systems in solution and solid glass matrixes were studied under increasing applied D.C electric fields between 0.25 and 5 kV/cm. Quantum dot systems in both solid glass and liquid solution matrixes gave rise to electro-optic effects, which modified their optical properties (absorption spectra, bandgap energy and refractive index). The effect is reversible, so that removal of the electric field returns the original electro absorption spectra. This work showed all nanoparticle samples except one displayed a linear decrease of band gap energy with electric field; this amounted to equivalent changes in quantum dot radii of 0.02 nm per kV in glass matrixes and about 0.03 nm per kV for solution matrixes. Evidence of improved mono-dispersity was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Henneberger, J. Puls, C. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, A.I. Ekimov, Semicond. Sci. Technol. 16, A41 (1991)

    Google Scholar 

  2. H. Rossmann, A. Schulzgen, F. Henneberger, M. Muller, Phys. Status Solidi (b) 159, 287 (1990)

    Article  CAS  Google Scholar 

  3. M.K. Varsha, J. El Hamdaoui, L.M. Pérez, V. Prasad, M. El-Yadri, D. Laroze, E.M. Feddi, Quantum confined stark effect on the linear and nonlinear optical properties of SiGe/Si semi oblate and prolate quantum dots grown in Si wetting layer. Nanomaterials 11, 1513–1536 (2021)

    Article  CAS  Google Scholar 

  4. K. Li, S. Zhu, S. Dai, Z. Li, H. Yin, Z. Chen, Shape effect on the electronic state and nonlinear optical properties in the regulable Y-shaped quantum dots under applied electric field. Opt Exp 29(4), 5848–5855 (2021)

    Article  Google Scholar 

  5. M. Choubani, H. Maaref, F. Saidi, Nonlinear optical properties of lens-shaped core/shell quantum dots coupled with a wetting layer: effects of transverse electric field, pressure, and temperature. J. Phys. Chem. Solids 138, 109226–109230 (2020)

    Article  CAS  Google Scholar 

  6. J.S. Weiner, D.A.B. Miller, D.S. Chemla et al., Strong polarization-sensitive electro-absorption in GaAs/AlGaAs quantum well waveguides. Appl. Phys. Lett. 47, 1148–1150 (1985)

    Article  CAS  Google Scholar 

  7. L.V. Keldysh, Behaviour of non-metallic crystals in strong electric fields. J. Exptl. Theor. Phys. 33, 994–1003 (1958)

    Google Scholar 

  8. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. J. Exptl. Theor. Phys. 47, 1945–1957 (1964)

    CAS  Google Scholar 

  9. R. Williams, Electric field induced light absorption in CdS. Phys. Rev. 117, 1487–1490 (1960)

    Article  CAS  Google Scholar 

  10. J.I. Pankove, Optical Processes in Semiconductors (Dover Publications Inc., New York, 1971)

    Google Scholar 

  11. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 3rd edn. (World Scientific, 1994), pp. 343–345

    Google Scholar 

  12. C. Kittel, Introduction to Solid State Physics, 7th edn. (J. Wiley and Sons Ltd., New York, 1996), pp. 364–366

    Google Scholar 

  13. L.E. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986)

    Article  CAS  Google Scholar 

  14. L.E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem Phys 80, 4403–4409 (1984)

    Article  CAS  Google Scholar 

  15. E.O. Chukwuocha, M.C. Onyeaju, Simulation of quantum dots in the confinement regime. Int. J. Appl. Sci. Eng. Res. 1(6), 784–792 (2012)

    Article  CAS  Google Scholar 

  16. L.E. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79, 5566–5571 (1983)

    Article  CAS  Google Scholar 

  17. HC van de Hulst, Light Scattering by Small Particles (Dover, 1981), pp. 114–130

    Google Scholar 

  18. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mat Res Bull 3, 37–46 (1968)

    Article  CAS  Google Scholar 

  19. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Technol. 61, 1–7 (2012)

    Article  Google Scholar 

  20. B. Ghosh, S. Hussain, D. Ghosh et al., Studies of CdTe films deposited by pulsed laser deposition technique. Physica B 407, 4214–4220 (2012)

    Google Scholar 

  21. N.S. Pesika, K.J. Stebe, P.C. Searson, Determination of the particle size distribution of quantum nanocrystals from absorbance spectra. Adv. Mater. 15, 1289–1291 (2003)

    Article  CAS  Google Scholar 

  22. K.T. Yong, W.C. Law, I. Roy et al., Aqueous phase synthesis of CdTe quantum dots for biophotonic. J. Biophoton. 4, 9–20 (2011)

    Article  CAS  Google Scholar 

  23. Z.J. Li et al., A robust artificial catalyst in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy Environ. Sci. 6, 465–469 (2013)

    Article  CAS  Google Scholar 

  24. L.H. Lajunen, P. Perämäki, Spectrochemical analysis by atomic absorption and emission. J. Chem. Edu. 86, 78–199 (2009)

    Google Scholar 

  25. F. Castro, B. Nabet, Numerical computation of the complex dielectric permittivity using Hilbert transform and FFT techniques. J Franklin Inst. 336B, 53–64 (1999)

    Article  Google Scholar 

  26. K.A. Whittaker, J. Keaveney, I. Hughes, C. Adams, The Hilbert transform: applications to atomic spectra. Phys. Rev. A 91, 1–5 (2014)

    Google Scholar 

  27. M.G. Feeney, R. Ince, M.H. Yukselici, C. Allahverdi, Interferometric investigation and simulation of refractive index in glass matrixes containing nanoparticles of varying sizes. Appl. Opt. 50, 3259–3267 (2011)

    Article  Google Scholar 

  28. M.S. Abd El-Sadek, S. Moorthy Babu, Growth and optical characterization of colloidal CdTe nanoparticles capped by a bifunctional molecule. Physica B 405, 3279–3283 (2010)

    Article  CAS  Google Scholar 

  29. P. Guyot-Sionnest, E. Lhuillier, H. Liu, A mirage study of CdSe colloidal quantum dot films, Urbach tail, and surface states. J. Chem. Phys. 137, 154704–154705 (2012)

    Article  Google Scholar 

  30. D.A.B. Miller, D.S. Chemla, T.C. Damen et al., Band edge electro absorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984)

    Article  CAS  Google Scholar 

  31. M.S. Mehata, Enhancement of charge transfer and quenching of photoluminescence of capped Cds quantum dots. Nat. Sci. Rep. 5(12056), 1–11 (2015)

    Google Scholar 

  32. Y. Zhang, W. Cheng, T. Zhang, T. Cui, Y. Wang, W.W. Yu, Size- and temperature-dependent quantum confined dielectric effect in colloidal PbSe and CdSe nanocrystals. J. Nanosci. Nanotechnol. 12, 6224–6230 (2012)

    Google Scholar 

  33. R. Ohshima, T. Nakabayashi, Y. Kobayashi, N. Tamai, N. Ohta, External electric field effects on state energy and photoexcitation dynamics of water-soluble CdTe nanoparticles. J. Phys. Chem. C 115, 15274–15281 (2011)

    Article  CAS  Google Scholar 

  34. N. Zamani, A. Keshavarz, H. Nadgaran, Quadratic Electro-Optic effect and Electro Absorption process of multi-layer spherical quantum dot enhanced by metal nanoparticles. Plasmonics 12, 383–391 (2017)

    Article  CAS  Google Scholar 

  35. N.V. Tepliakov, M.Y. Leonov, A.V. Baranov, A.V. Fedorov, I.D. Rukhlenko, Quantum theory of electroabsorption in semiconductor nanocrystals. Opt. Exp. 24, A52–A57 (2016)

    Article  CAS  Google Scholar 

  36. D. Sapkota, Y. Li, O.R. Musaev, J.M. Wrobel, M.B. Kruger, Effect of electric fields on tin nanoparticles prepared by laser ablation in water. J. Laser App. 29, 012002, 1–4 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Ince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ince, R., Alper, M.P., Yukselici, M.H. (2022). Reversible DC Electric Field Modification of Optical Properties of CdTe Nanocrystals. In: Ünlü, H., Horing, N.J.M. (eds) Progress in Nanoscale and Low-Dimensional Materials and Devices. Topics in Applied Physics, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-93460-6_21

Download citation

Publish with us

Policies and ethics