Skip to main content

Feature Selection: From the Past to the Future

  • Chapter
  • First Online:
Advances in Selected Artificial Intelligence Areas

Abstract

Feature selection has been widely used for decades as a preprocessing step that allows for reducing the dimensionality of a problem while improving classification accuracy. The need for this kind of technique has increased dramatically in recent years with the advent of Big Data. This data explosion not only has the problem of a large number of samples, but also of big dimensionality. This chapter will analyze the paramount need for feature selection and briefly review the most popular feature selection methods and some typical applications. Moreover, as the new Big Data scenario offers new opportunities to machine learning researchers, we will discuss the new challenges that need to be faced: from the scalability of the methods to the role of feature selection in the presence of deep learning, as well as exploring its use in embedded devices. Beyond a shadow of doubt, the explosion in the number of features and computing technologies will point to a number of hot spots for feature selection researchers to launch new lines of research.

Part of the content of this chapter was previously published in Knowledge-Based Systems (https://doi.org/10.1016/j.knosys.2015.05.014, https://doi.org/10.1016/j.knosys.2020.105885, https://doi.org/10.1016/j.knosys.2019.105326), Knowledge and Information Systems (https://doi.org/10.1007/s10115-012-0487-8), and Information Fusion (https://doi.org/10.1016/j.inffus.2018.11.008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Climente-González, C. Azencott, S. Kaski, M. Yamada, Block HSIC Lasso: model-free biomarker detection for ultra-high dimensional data. Bioinformatics 35(14), i427–i435 (2019)

    Article  Google Scholar 

  2. N. Grgic-Hlaca, M.B. Zafar, K.P. Gummadi, A. Weller, Beyond distributive fairness in algorithmic decision making: Feature selection for procedurally fair learning. AAAI 18, 51–60 (2018)

    Article  Google Scholar 

  3. I. Furxhi, F. Murphy, M. Mullins, A. Arvanitis, C.A. Poland, Nanotoxicology data for in silico tools: a literature review. Nanotoxicology 1–26 (2020)

    Google Scholar 

  4. Y. Zhai, Y. Ong, I.W. Tsang, The emerging “big dimensionality’’. IEEE Comput. Intell. Mag. 9(3), 14–26 (2014)

    Article  Google Scholar 

  5. M. Tan, I.W. Tsang, L. Wang, Towards ultrahigh dimensional feature selection for big data. J. Mach. Learn. Res. 15, 1371–1429 (2014)

    MathSciNet  MATH  Google Scholar 

  6. K. Weinberger, A. Dasgupta, J. Langford, A. Smola, J. Attenberg, Feature hashing for large scale multitask learning, in Proceedings of the 26th Annual International Conference on Machine Learning (2009), pp. 1113–1120

    Google Scholar 

  7. D.L. Donoho et al., High-dimensional data analysis: the curses and blessings of dimensionality, in AMS Math Challenges Lecture (2000), pp. 1–32

    Google Scholar 

  8. R. Bellman, Dynamic Programming (Princeton UP, Princeton, NJ, 1957), p. 18

    Google Scholar 

  9. I. Guyon, A. Elisseeff, An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  10. I. Guyon, Feature Extraction: Foundations and Applications, vol. 207 (Springer, Berlin, 2006)

    Google Scholar 

  11. B. Bonev, Feature Selection Based on Information Theory (Universidad de Alicante, 2010)

    Google Scholar 

  12. G. Hughes, On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)

    Article  Google Scholar 

  13. A.J. Miller, Selection of subsets of regression variables. J. R. Stat. Society. Ser. (Gen.) 389–425 (1984)

    Google Scholar 

  14. A.L. Blum, P. Langley, Selection of relevant features and examples in machine learning. Artif. Intell. 97(1), 245–271 (1997)

    Article  MathSciNet  Google Scholar 

  15. M. Dash, H. Liu, Feature selection for classification. Intell. Data Anal. 1(3), 131–156 (1997)

    Article  Google Scholar 

  16. R. Kohavi, G.H. John, Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)

    Article  Google Scholar 

  17. H. Liu, H. Motoda, Computational Methods of Feature Selection (CRC Press, 2007)

    Google Scholar 

  18. Z.A. Zhao, H. Liu, Spectral Feature Selection for Data Mining (Chapman & Hall/CRC, 2011)

    Google Scholar 

  19. C. Boutsidis, P. Drineas, M.W. Mahoney, Unsupervised feature selection for the k-means clustering problem, in Advances in Neural Information Processing Systems (2009), pp. 153–161

    Google Scholar 

  20. V. Roth, T. Lange, Feature selection in clustering problems, in Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  21. R. Leardi, A. Lupiáñez González, Genetic algorithms applied to feature selection in pls regression: how and when to use them. Chemom. Intell. Lab. Syst. 41(2), 195–207 (1998)

    Google Scholar 

  22. D. Paul, E. Bair, T. Hastie, R. Tibshirani, “Preconditioning” for feature selection and regression in high-dimensional problems. Ann. Stat. 1595–1618 (2008)

    Google Scholar 

  23. M. Pal, G.M. Foody, Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 48(5), 2297–2307 (2010)

    Article  Google Scholar 

  24. L. Yu, H. Liu, Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 1205–1224 (2004)

    Google Scholar 

  25. M.A. Hall, Correlation-Based Feature Selection for Machine Learning. PhD thesis, University of Waikato, Hamilton, New Zealand (1999)

    Google Scholar 

  26. M. Dash, H. Liu, Consistency-based search in feature selection. J. Artif. Intell. 151(1–2), 155–176 (2003)

    Article  MathSciNet  Google Scholar 

  27. A.M. Hall, L.A. Smith, Practical feature subset selection for machine learning. J. Comput. Sci. 98, 4–6 (1998)

    Google Scholar 

  28. L. Yu, H. Liu, Feature selection for high-dimensional data: a fast correlation-based filter solution, in Proceedings of The Twentieth International Conference on Machine Learning, ICML (2003), pp. 856–863

    Google Scholar 

  29. Z. Zhao, H. Liu, Searching for interacting features, in Proceedings of 20th International Joint Conference on Artificial Intelligence, IJCAI (2007), pp. 1156–1161

    Google Scholar 

  30. I. Kononenko, Estimating attributes: analysis and extensions of relief, in Proceedings of European Conference on Machine Learning, ECML. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence) (1994), pp. 171–182

    Google Scholar 

  31. K. Kira, L. Rendell, A practical approach to feature selection, in Proceedings of the 9th International Conference on Machine Learning, ICML (1992), pp. 249–256

    Google Scholar 

  32. H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of maxdependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  33. S. Ramírez-Gallego, I. Lastra, D. Martínez-Rego, V. Bol\({\rm \acute{\notin }}\)n-Canedo, J.M Benítez, F. Herrera, A. Alonso-Betanzos, Fast-mRMR: fast minimum redundancy maximum relevance algorithm for high-dimensional big data. Int. J. Intell. Syst. 32, 134–152 (2017)

    Google Scholar 

  34. S. Seth, J.C. Principe, Variable selection: a statistical dependence perspective, in Proceedings of the International Conference of Machine Learning and Applications (2010), pp. 931–936

    Google Scholar 

  35. I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    Article  Google Scholar 

  36. M. Mejía-Lavalle, E. Sucar, G. Arroyo, Feature selection with a perceptron neural net, in Proceedings of the International Workshop on Feature Selection for Data Mining (2006), pp. 131–135

    Google Scholar 

  37. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc.: Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  38. H. Zou, T. Hastie, Regularization and variable selection via the elastic net. J. R. Stat. Soc.: Ser. B 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

  39. D.W. Marquardt, R.D. Snee, Ridge regression in practice. Am. Stat. 29(1), 1–20 (1975)

    MATH  Google Scholar 

  40. M.F. Balin, A. Abid, J.Y. Zou, Concrete autoencoders: differentiable feature selection and reconstruction, in International Conference on Machine Learning (2019), pp. 444–453

    Google Scholar 

  41. B. Cancela, V. Bolón-Canedo, A. Alonso-Betanzos, E2E-FS: an end-to-end feature selection method for neural networks. arXiv e-prints (2020)

    Google Scholar 

  42. E. Frank, M.A. Hall, I.H. Witten. Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2016)

    Google Scholar 

  43. D. Dua, C. Graff, UCI machine learning repository (2017)

    Google Scholar 

  44. C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  45. R. Bekkerman, M. Bilenko, J. Langford, Scaling Up Machine Learning: Parallel and Distributed Approaches (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  46. J.A. Olvera-López, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, J. Kittler, A review of instance selection methods. Artif. Intell. Rev. 34(2), 133–143 (2010)

    Article  Google Scholar 

  47. D. Rego-Fernández, V. Bolón-Canedo, A. Alonso-Betanzos, Scalability analysis of mRMR for microarray data, in Proceedings of the 6th International Conference on Agents and Artificial Intelligence (2014), pp. 380–386

    Google Scholar 

  48. A. Alonso-Betanzos, V. Bolón-Canedo, D. Fernández-Francos, I. Porto-Díaz, N. Sánchez-Maroño, Up-to-Date feature selection methods for scalable and efficient machine learning, in Efficiency and Scalability Methods for Computational Intellect (IGI Global, 2013), pp. 1–26

    Google Scholar 

  49. M. Bramer, Principles of Data Mining, vol. 180 (Springer, Berlin, 2007)

    Google Scholar 

  50. L.I. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)

    Article  Google Scholar 

  51. P.K. Chan, S.J. Stolfo, Toward parallel and distributed learning by meta-learning, in AAAI Workshop in Knowledge Discovery in Databases (1993), pp. 227–240

    Google Scholar 

  52. V.S. Ananthanarayana, D.K. Subramanian, M.N. Murty, Scalable, distributed and dynamic mining of association rules. High Perform. Comput. HiPC 2000, 559–566 (2000)

    Google Scholar 

  53. G. Tsoumakas, I. Vlahavas, Distributed data mining of large classifier ensembles, in Proceedings Companion Volume of the Second Hellenic Conference on Artificial Intelligence (2002), pp. 249–256

    Google Scholar 

  54. S. McConnell, D.B. Skillicorn, Building predictors from vertically distributed data, in Proceedings of the 2004 Conference of the Centre for Advanced Studies on Collaborative research (IBM Press, 2004), pp. 150–162

    Google Scholar 

  55. D.B. Skillicorn, S.M. McConnell, Distributed prediction from vertically partitioned data. J. Parallel Distrib. Comput. 68(1), 16–36 (2008)

    Article  Google Scholar 

  56. M. Banerjee, S. Chakravarty, Privacy preserving feature selection for distributed data using virtual dimension, in Proceedings of the 20th ACM International Conference on Information and Knowledge Management (ACM, 2011), pp. 2281–2284

    Google Scholar 

  57. Z. Zhao, R. Zhang, J. Cox, D. Duling, W. Sarle, Massively parallel feature selection: an approach based on variance preservation. Mach. Learn. 92(1), 195–220 (2013)

    Article  MathSciNet  Google Scholar 

  58. A. Sharma, S. Imoto, S. Miyano, A top-r feature selection algorithm for microarray gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(3), 754–764 (2011)

    Google Scholar 

  59. V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, Distributed feature selection: an application to microarray data classification. Appl. Soft Comput. 30, 136–150 (2015)

    Article  Google Scholar 

  60. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  61. Apache Hadoop. http://hadoop.apache.org/. Accessed January 2021

  62. Apache Spark. https://spark.apache.org. Accessed January 2021

  63. MLib / Apache Spark. https://spark.apache.org/mllib. Accessed January 2021

  64. L.I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms (Wiley, New York, 2013)

    Google Scholar 

  65. S. Nogueira, G. Brown, Measuring the stability of feature selection with applications to ensemble methods, in Proceedings of the International Workshop on Multiple Classifier Systems (2015), pp. 135–146

    Google Scholar 

  66. L.I. Kuncheva, A stability index for feature selection, in Proceedings of the 25th IASTED International Multiconference Artificial intelligence and applications (2007), pp. 421–427

    Google Scholar 

  67. B. Seijo-Pardo, Porto-Díaz, V. Bolón-Canedo, A. Alonso-Betanzos. Ensemble feature selection, homogeneous and heterogeneous approaches. Knowl.-Based Syst. 114, 124–139 (2017)

    Google Scholar 

  68. V. Bolón-Canedo, K. Sechidis, N. Sánchez-Maroño, A. Alonso-Betanzos, G. Brown, Exploring the consequences of distributed feature selection in DNA microarray data, in Proceedings 2017 International Joint Conference on Neural Networks (IJCNN) (2017), pp. CFP17–US–DVD

    Google Scholar 

  69. V. Bolón-Canedo, A. Alonso-Betanzos, Ensembles for feature selection: a review and future trends. Inf. Fusion 52, 1–12 (2019)

    Article  Google Scholar 

  70. B. Seijo-Pardo, V. Bolón-Canedo, A. Alonso-Betanzos, On developing an automatic threshold applied to feature selection ensembles. Inf. Fusion 45, 227–245 (2019)

    Article  Google Scholar 

  71. V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 34, 483–519 (2013)

    Article  Google Scholar 

  72. V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, An ensemble of filters and classifiers for microarray data classification. Pattern Recognit. 45(1), 531–539 (2012)

    Article  Google Scholar 

  73. J. Rogers, S. Gunn, Ensemble algorithms for feature selection. Deterministic and Statistical Methods in Machine Learning. Lecture Notes in Computer Science, vol. 3635 (2005), pp. 180–198

    Google Scholar 

  74. P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  75. S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From theory to algorithms (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  76. K. Bunte, M. Biehl, B. Hammer, A general framework for dimensionality-reducing data visualization mapping. J. Neural Comput. 24, 771–804 (2012)

    Article  Google Scholar 

  77. P. Castells A. Bellogín, I. Cantador, A. Ortigosa (2010) Discerning relevant model features in a content-based collaborative recommender system, in Preference Learning, ed. by J. Färnkranz, E. Hällermeier (Springer, Berlin, 2010), pp. 429–455

    Google Scholar 

  78. N. Sánchez-Maroño, A. Alonso-Betanzos, O. Fontenla-Romero, C. Brinquis-Núñez, J.G. Polhill, T. Craig, A. Dumitru, R. García-Mira, An agent-based model for simulating environmental behavior in an educational organization. Neural Process. Lett. 42(1), 89–118 (2015)

    Article  Google Scholar 

  79. D.M. Maniyar, I.T. Nabney, Data visualization with simultaneous feature selection, in 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, 2006. CIBCB’06 (IEEE, 2006), pp. 1–8

    Google Scholar 

  80. J. Krause, A. Perer, E. Bertini, Infuse: interactive feature selection for predictive modeling of high dimensional data. IEEE Trans. Vis. Comput. Graph. 20(12), 1614–1623 (2014)

    Article  Google Scholar 

  81. K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visualising image classification models and saliency maps (2013), arXiv:1312.6034

  82. D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, in International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  83. B. Cancela, V. Bolón-Canedo, A. Alonso-Betanzos, J. Gama, A scalable saliency-based feature selection method with instance-level information. Knowl.-Based Syst. 192, 105326 (2020)

    Google Scholar 

  84. J. Chen, L. Song, M. Wainwright, M. Jordan, Learning to explain: an information-theoretic perspective on model interpretation, in International Conference on Machine Learning (2018), pp. 883–892

    Google Scholar 

  85. J. Yoon, J. Jordon, M. van der Schaar, Invase: instance-wise variable selection using neural networks, in International Conference on Learning Representations (2018)

    Google Scholar 

  86. S. Ray, J. Park, S. Bhunia, Wearables, implants, and internet of things: the technology needs in the evolving landscape. IEEE Trans. Multi-Scale Comput. Syst. 2(2), 123–128 (2016)

    Article  Google Scholar 

  87. P. Koopman, Design constraints on embedded real time control systems (1990)

    Google Scholar 

  88. B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D. Kalenichenko, Quantization and training of neural networks for efficient integer-arithmetic-only inference, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 2704–2713

    Google Scholar 

  89. N. Wang, J. Choi, D. Brand, C. Chen, K. Gopalakrishnan, Training deep neural networks with 8-bit floating point numbers, in Proceedings of the 32nd International Conference on Neural Information Processing Systems (2018), pp. 7686–7695

    Google Scholar 

  90. X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: an extremely efficient convolutional neural network for mobile devices, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 6848–6856

    Google Scholar 

  91. S. Tschiatschek, F. Pernkopf, Parameter learning of Bayesian network classifiers under computational constraints, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases (Springer, 2015), pp. 86–101

    Google Scholar 

  92. L. Morán-Fernández, K. Sechidis, V. Bolón-Canedo, A. Alonso-Betanzos, G. Brown, Feature selection with limited bit depth mutual information for portable embedded systems. Knowl.-Based Syst. 197, 105885 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Bolón-Canedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bolón-Canedo, V., Alonso-Betanzos, A., Morán-Fernández, L., Cancela, B. (2022). Feature Selection: From the Past to the Future. In: Virvou, M., Tsihrintzis, G.A., Jain, L.C. (eds) Advances in Selected Artificial Intelligence Areas. Learning and Analytics in Intelligent Systems, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-93052-3_2

Download citation

Publish with us

Policies and ethics