Skip to main content

Phase Field Modeling of Brittle and Ductile Fracture

  • Chapter
  • First Online:
Non-standard Discretisation Methods in Solid Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 98))

  • 865 Accesses

Abstract

This section describes a phase field model for fracture. For the brittle version of the model the discretisation with finite elements is discussed. Higher order elements and elements based on exponential shape functions, that capture the one dimensional solution behavior, are addressed. For the exponential shape functions special attention is given to the quadrature rule, which plays an important role for the efficiency and accuracy. Furthermore, an adaptive strategy that combines standard bi-linear and exponential elements with higher accuracy is proposed. To extend the physical aspects of the fracture phase field model the existing model is extended to ductile fracture introducing plastic deformation. Depending on the hardening behavior different fracture modes are obtained and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.A. Francfort, J.J. Margio, Revisiting brittle fracture as an energy minimization program. J. Mech. Phys. Solids, 1319–1342 (1998)

    Google Scholar 

  2. B. Bourdin, Numerical implementation of the variational formulatoin of quasi-static brittle fracture. Interfaces Free Bound. 9(3), 411–430 (2007)

    Article  MathSciNet  Google Scholar 

  3. A.A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A 221, 163–198 (1921)

    MATH  Google Scholar 

  4. D. Gross, Th. Seelig, Fracture Mechanics (Springer, 2018)

    Google Scholar 

  5. C. Kuhn, Numerical and analytical Investigation of a Phase Field Model for Fracture. Ph.D. thesis. Technische Universität Kaiserslautern (2013)

    Google Scholar 

  6. C. Kuhn, R. Müller, Interpretation of parameters in phase field models for fracture. Proc. Appl. Math. Mech. 12, 161–162 (2012)

    Article  Google Scholar 

  7. C. Kuhn, R. Müller, A new finite element technique for a phase field model of brittle fracture. J. Theor. Appl. Mech., 1115–1133 (2011)

    Google Scholar 

  8. O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 7th edn. (Butterworth-Heinemann, 2013)

    Google Scholar 

  9. T. Hidetosi, M. Mori, Double exponential formulas for numerical integration. RIMS, Kyoto Univ., 721–741 (1974)

    Google Scholar 

  10. R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods (Oxford University Press, 2013)

    Google Scholar 

  11. C. Kuhn, R. Müller, A discussion of fracture mechanisms in heterogeneous materials by means of configurational forces in a phase field fracture model. Comput. Methods Appl. Mech. Eng. 312, 95–116 (2016)

    Article  MathSciNet  Google Scholar 

  12. B. Bourdin, C. Larsen, C. Richardson, A time-discrete model for dynamic fracture based on crack regularization. Int. J. Fract., 133–143 (2011)

    Google Scholar 

  13. M. Hofacker, C. Miehe, A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns. Int. J. Numer. Meth. Eng., 276–301 (2013)

    Google Scholar 

  14. C. Kuhn, R. Müller, A continuum phase field model for fracture. Eng. Fract. Mech. 77(18), 3625–3634 (2010)

    Article  Google Scholar 

  15. S. Nagaraja, M. Elhaddad, M. Ambati, S. Kollmannsberger, L.D. Lorenzis, E. Rank, Comput. Mech. 63(6), 1283–1300 (2019)

    Article  MathSciNet  Google Scholar 

  16. M.J. Borden et al., A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput. Methods Appl. Mech. Eng. 312, 130–166 (2016)

    Article  MathSciNet  Google Scholar 

  17. T. Noll, C. Kuhn, R. Müller, Investigation of a phase field model for elasto-plastic fracture. Proc. Appl. Math. Mech. 16, 157–158 (2016)

    Article  Google Scholar 

  18. T. Noll, C. Kuhn, R. Müller, A monolithic solution scheme for a phase field model of ductile fracture. Proc. Appl. Math. Mech. 17, 75–78 (2017)

    Article  Google Scholar 

  19. T. Noll, C. Kuhn, R. Müller, Modeling of ductile fracture by a phase field approach. Proc. Appl. Math. Mech. 18, 1–2 (2018)

    Google Scholar 

  20. H. Amor, J.-J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)

    Article  Google Scholar 

  21. J.C. Simo, T.C.R. Hughes, Computational Inelasticity (Springer, New York, 1998)

    Google Scholar 

  22. B. Bourdin, G.A. Francfort, J.J. Marigo, Numerical experimentsin revisited brittle fracture. J. Mech. Phys. Solids, 797–82 (2000)

    Google Scholar 

  23. C. Kuhn, T. Noll, R. Müller, On phase field modeling of ductile fracture. GAMM-Mitteilungen, 35–54 (2016)

    Google Scholar 

  24. C. Kuhn, A. Schlüter, R. Müller, On degradation functions in phase field fracture models. Comput. Mater. Sci. 108, 374–384 (2015)

    Article  Google Scholar 

  25. M. Borden et al., A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012)

    Article  MathSciNet  Google Scholar 

  26. T. Noll, C. Kuhn, D. Olesch, R. Müller, 3D phase field simulations of ductile fracture. GAMM-Mitteilungen, 43-2 (2019)

    Google Scholar 

  27. H. Yuan, W. Brocks, Quantification of constraint effects in elastic-plastic crack front fields. J. Mech. Phys. Solids 46(2), 219–241 (1998)

    Article  Google Scholar 

  28. D. Fernández Zúñiga, J.F. Kalthoff, A. Fernández Canteli, J. Grasa, M. Doblaré, Three dimensional finite element calculations of crack tip plastic zones and KIC specimen size requirements, in 17th European Conference on Fracture: Multilevel Approach to Fracture of Materials, Components and Structures (2005)

    Google Scholar 

  29. S. Kudari, K. Kodancha, Effect of specimen thickness on plastic zone, in 17th European Conference on Fracture 2008: Multilevel Approach to Fracture of Materials, Components and Structures 1, 530–538 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuhn, C., Noll, T., Olesch, D., Müller, R. (2022). Phase Field Modeling of Brittle and Ductile Fracture. In: Schröder, J., Wriggers, P. (eds) Non-standard Discretisation Methods in Solid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-92672-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92672-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92671-7

  • Online ISBN: 978-3-030-92672-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics