Skip to main content

Associative Graphs for Fine-Grained Text Sentiment Analysis

  • Conference paper
  • First Online:
  • 1548 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13109))

Abstract

Due to social media’s ubiquitousness, most advertising campaigns take place on such platforms as Facebook, Twitter, or Instagram. As a result, Natural Language Processing has become an essential tool to extract information about the users: their personality traits, brand preferences, distinctive vocabulary, etc. Such data can be further used to create text adverts profiled to engage with users who share a certain set of features. While most of the algorithms capable of processing the text are neural network-driven, associative graphs serve the same purpose, attaining usually similar or better accuracy, but being more explainable than black box-like models based on neural networks. This paper presents an associative graph for natural language processing and fine-grained sentiment analysis. The ability of associative graphs to represent complex relations between phrases can be used to create a model capable of classifying the input data into many categories simultaneously with high accuracy and efficiency. This approach enabled us to acquire a model performing similarly or better than the state-of-the-art solutions while being more explicit and easier to create and explain.

Supported by Native Hash LTD and the AGH University of Science and Technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bates, M.: Models of natural language understanding. Proc. Natl. Acad. Sci. U. S. A. 92(22), 9977–9982 (1995). https://doi.org/10.1073/pnas.92.22.9977

    Article  Google Scholar 

  2. Bohnet, B., McDonald, R., Simoes, G., Andor, D., Pitler, E., Maynez, J.: Morphosyntactic tagging with a meta-bilstm model over context sensitive token encodings (2018)

    Google Scholar 

  3. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  4. Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection and the problem of offensive language (2017)

    Google Scholar 

  5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis (June 2019). https://doi.org/10.18653/v1/N19-1423

  6. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.: XAI-explainable artificial intelligence. Sci. Robot. 4(37), eaay7120 (2019). https://doi.org/10.1126/scirobotics.aay7120

    Article  Google Scholar 

  7. Horzyk, A.: Associative graph data structures with an efficient access via avb+trees. In: 2018 11th International Conference on Human System Interaction (HSI), pp. 169–175 (2018)

    Google Scholar 

  8. Horzyk, A., Gadamer, M.: Associative text representation and correction. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 76–87. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38658-9_7

    Chapter  Google Scholar 

  9. Horzyk, A., Tadeusiewicz, R.: A psycholinguistic model of man-machine interactions based on needs of human personality. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions, Advances in Intelligent and Soft Computing, vol. 59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00563-3_5

  10. Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Zhao, T.: Smart: robust and efficient fine-tuning for pre-trained natural language models through principled regularized optimization. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.197

  11. Johnson, R., Zhang, T.: Effective use of word order for text categorization with convolutional neural networks (2015)

    Google Scholar 

  12. Liu, H., et al.: NRPA. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (2019). https://doi.org/10.1145/3331184.3331371

  13. Mark, M., Pearson, C.: The Hero and the Outlaw: Building Extraordinary Brands Through the Power of Archetypes. McGraw-Hill Education, New York (2001)

    Google Scholar 

  14. Mroczkowski, R., Rybak, P., Wróblewska, A., Gawlik, I.: HerBERT: efficiently pretrained transformer-based language model for Polish. In: Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing, pp. 1–10. Association for Computational Linguistics, Kiyv (April 2021)

    Google Scholar 

  15. Nguyen, B., Li, M., Chen, C.H.: The targeted and non-targeted framework: differential impact of marketing tactics on customer perceptions. J. Target. Meas. Anal. Mark. 20(2), 96–108 (2012). https://doi.org/10.1057/jt.2012.7

    Article  Google Scholar 

  16. Sachan, D.S., Zaheer, M., Salakhutdinov, R.: Revisiting LSTM networks for semi-supervised text classification via mixed objective function. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6940–6948 (2019). https://doi.org/10.1609/aaai.v33i01.33016940

  17. Sun, Z., et al.: Self-explaining structures improve NLP models (2020)

    Google Scholar 

  18. Takase, S., Kiyono, S.: Lessons on parameter sharing across layers in transformers (2021)

    Google Scholar 

  19. Verma, S., Sharma, R., Deb, S., Maitra, D.: Artificial intelligence in marketing: systematic review and future research direction. Int. J. Inf. Manag. Data Insights 1(1), 100002 (2021). https://doi.org/10.1016/j.jjimei.2020.100002

    Article  Google Scholar 

  20. Wu, Z., Ong, D.C.: Context-guided BERT for targeted aspect-based sentiment analysis (2020)

    Google Scholar 

  21. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le, Q.V.: Xlnet: generalized autoregressive pretraining for language understanding (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Horzyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wójcik, M., Horzyk, A., Bulanda, D. (2021). Associative Graphs for Fine-Grained Text Sentiment Analysis. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13109. Springer, Cham. https://doi.org/10.1007/978-3-030-92270-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92270-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92269-6

  • Online ISBN: 978-3-030-92270-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics