Skip to main content

Computational Approaches for the Investigation of Intra-tumor Heterogeneity and Clonal Evolution from Bulk Sequencing Data in Precision Oncology Applications

  • Chapter
  • First Online:
Computational Methods for Precision Oncology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1361))

  • 2058 Accesses

Abstract

While the clonal model of cancer evolution was first proposed over 40 years ago, only recently next-generation sequencing has allowed a more precise and quantitative assessment of tumor clonal and subclonal landscape. Consequently, a plethora of computational approaches and tools have been developed to analyze this data with the goal of inferring the clonal landscape of a tumor and characterize its temporal or spatial evolution. This chapter introduces intra-tumor heterogeneity (ITH) in the context of precision oncology applications and provides an overview of the basic concepts, algorithms, and tools for the dissection, analysis, and visualization of ITH from bulk DNA sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;28:141.

    Article  CAS  Google Scholar 

  2. Rosenthal R, McGranahan N, Herrero J, Swanton C. Deciphering genetic intratumor heterogeneity and its impact on cancer evolution. Annu Rev Cancer Biol. 2017;1:223–40.

    Article  Google Scholar 

  3. Hobor S, et al. TGFα and amphiregulin paracrine network promotes resistance to EGFR blockade in colorectal cancer cells. Clin Cancer Res. 2014;20:6429–38.

    Article  CAS  PubMed  Google Scholar 

  4. Keats JJ, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120:1067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marusyk A, et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature. 2014;514:54–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Landau DA, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152:714–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Laganà A, et al. Integrative network analysis identifies novel drivers of pathogenesis and progression in newly diagnosed multiple myeloma. Leukemia. 2018;32:120–30.

    Article  PubMed  CAS  Google Scholar 

  8. Karlsson J, et al. Four evolutionary trajectories underlie genetic intratumoral variation in childhood cancer. Nat Genet. 2018;50:944–50.

    Article  CAS  PubMed  Google Scholar 

  9. Gerlinger M, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Laganà A, et al. Precision medicine for relapsed multiple myeloma on the basis of an integrative multiomics approach. JCO Precis Oncol. 2018;2018:1–17.

    Google Scholar 

  11. Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med. 2020;12:8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Uzilov AV, et al. Development and clinical application of an integrative genomic approach to personalized cancer therapy. Genome Med. 2016;8:1–20.

    Article  CAS  Google Scholar 

  13. Bode AM, Dong Z. Precision oncology- the future of personalized cancer medicine? NPJ Precis Oncol. 2017;1:2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Remon J, Dienstmann R. Precision oncology: separating the wheat from the chaff. ESMO Open. 2018;3:e000446.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li X, Warner JL. A review of precision oncology knowledgebases for determining the clinical actionability of genetic variants. Front Cell Dev Biol. 2020;8:48.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Warburton L, et al. Stopping targeted therapy for complete responders in advanced BRAF mutant melanoma. Sci Rep. 2020;10:18878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marusyk A, Janiszewska M, Polyak K. Intratumor heterogeneity: the Rosetta stone of therapy resistance. Cancer Cell. 2020;37:471–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rye IH, et al. Intratumor heterogeneity defines treatment-resistant HER2+ breast tumors. Mol Oncol. 2018;12:1838–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi H, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4:80–93.

    Article  CAS  PubMed  Google Scholar 

  20. Jamal-Hanjani M, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376:2109–21.

    Article  CAS  PubMed  Google Scholar 

  21. Bailey C, et al. Tracking cancer evolution through the disease course. Cancer Discov. 2021;11:916–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jamal-Hanjani M, et al. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol. 2014;12:e1001906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Watkins TBK, et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature. 2020;587:126–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. TRACERx Renal consortium. TRACERx renal: tracking renal cancer evolution through therapy. Nat Rev Urol. 2017;14:575–6.

    Article  Google Scholar 

  25. Turajlic S, et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell. 2018;173:581–94, e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Turajlic S, et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell. 2018;173:595–610, e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dentro SC, Wedge DC, Van Loo P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb Perspect Med. 2017;7:a026625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tarabichi M, et al. A practical guide to cancer subclonal reconstruction from DNA sequencing. Nat Methods. 2021;18:144–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vandin F. Computational methods for characterizing cancer mutational heterogeneity. Front Genet. 2017;8:83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nik-Zainal S, et al. The life history of 21 breast cancers. Cell. 2015;162:924.

    Article  CAS  Google Scholar 

  31. Roth A, et al. PyClone: statistical inference of clonal population structure in cancer. Nat Methods. 2014;11:396–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gillis S, Roth A. PyClone-VI: scalable inference of clonal population structures using whole genome data. BMC Bioinformatics. 2020;21:571.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miller CA, et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol. 2014;10:e1003665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fischer A, Vázquez-García I, Illingworth CJR, Mustonen V. High-definition reconstruction of clonal composition in cancer. Cell Rep. 2014;7:1740–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deshwar AG, et al. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 2015;16:35.

    Article  PubMed  PubMed Central  Google Scholar 

  36. El-Kebir M, Satas G, Oesper L, Raphael BJ. Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst. 2016;3:43–53.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang Y, Qiu Y, Minn AJ, Zhang NR. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing. Proc Natl Acad Sci U S A. 2016;113:E5528–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shinde J, et al. Palimpsest: an R package for studying mutational and structural variant signatures along clonal evolution in cancer. Bioinformatics. 2018;34:3380–1.

    CAS  PubMed  Google Scholar 

  39. Deveau P, et al. QuantumClone: clonal assessment of functional mutations in cancer based on a genotype-aware method for clonal reconstruction. Bioinformatics. 2018;34:1808–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eaton J, Wang J, Schwartz R. Deconvolution and phylogeny inference of structural variations in tumor genomic samples. Bioinformatics. 2018;34:i357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Y, Zhou S, Schwartz DC, Ma J. Allele-specific quantification of structural variations in cancer genomes. Cell Syst. 2016;3:21–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cmero M, et al. Inferring structural variant cancer cell fraction. Nat Commun. 2020;11:730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schröder J, et al. Socrates: identification of genomic rearrangements in tumour genomes by re-aligning soft clipped reads. Bioinformatics. 2014;30:1064–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Myers MA, Satas G, Raphael BJ. CALDER: inferring phylogenetic trees from longitudinal tumor samples. Cell Syst. 2019;8:514–22, e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ellson J, Gansner E, Koutsofios L, North SC, Woodhull G. Graphviz—open source graph drawing tools. In: Graph drawing. Berlin Heidelberg: Springer; 2002. p. 483–4.

    Chapter  Google Scholar 

  46. Ricketts C, et al. Meltos: multi-sample tumor phylogeny reconstruction for structural variants. Bioinformatics. 2020;36:1082–90.

    Article  CAS  PubMed  Google Scholar 

  47. Ricketts C, Popic V, Toosi H, Hajirasouliha I. Using LICHeE and BAMSE for reconstructing cancer phylogenetic trees. Curr Protoc Bioinformatics. 2018;62:e49.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xiao Y, et al. FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples. Nat Commun. 2020;11:4469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salcedo A, et al. A community effort to create standards for evaluating tumor subclonal reconstruction. Nat Biotechnol. 2020;38:97–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Flensburg C, Sargeant T, Oshlack A, Majewski IJ. SuperFreq: integrated mutation detection and clonal tracking in cancer. PLoS Comput Biol. 2020;16:e1007603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Koboldt DC, Larson DE, Wilson RK. Using VarScan 2 for germline variant calling and somatic mutation detection. Curr Protoc Bioinformatics. 2013;44(1):15-4.

    Article  Google Scholar 

  53. Sundermann LK, Wintersinger J, Rätsch G, Stoye J, Morris Q. Reconstructing tumor evolutionary histories and clone trees in polynomial-time with SubMARine. PLoS Comput Biol. 2021;17:e1008400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Avila Cobos F, Vandesompele J, Mestdagh P, De Preter K. Computational deconvolution of transcriptomics data from mixed cell populations. Bioinformatics. 2018;34:1969–79.

    Article  PubMed  CAS  Google Scholar 

  55. Park Y, Lim S, Nam J-W, Kim S. Measuring intratumor heterogeneity by network entropy using RNA-seq data. Sci Rep. 2016;6:37767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li M, Zhang Z, Li L, Wang X. An algorithm to quantify intratumor heterogeneity based on alterations of gene expression profiles. Commun Biol. 2020;3:505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Krzywinski M. Visualizing clonal evolution in cancer. Mol Cell. 2016;62:652–6.

    Article  CAS  PubMed  Google Scholar 

  58. Miller CA, et al. Visualizing tumor evolution with the fishplot package for R. BMC Genomics. 2016;17:880.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dang HX, et al. ClonEvol: clonal ordering and visualization in cancer sequencing. Ann Oncol. 2017;28:3076–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abécassis J, et al. Assessing reliability of intra-tumor heterogeneity estimates from single sample whole exome sequencing data. PLoS One. 2019;14:e0224143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ewing AD, et al. Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nat Methods. 2015;12:623–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Laganà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laganà, A. (2022). Computational Approaches for the Investigation of Intra-tumor Heterogeneity and Clonal Evolution from Bulk Sequencing Data in Precision Oncology Applications. In: Laganà, A. (eds) Computational Methods for Precision Oncology. Advances in Experimental Medicine and Biology, vol 1361. Springer, Cham. https://doi.org/10.1007/978-3-030-91836-1_6

Download citation

Publish with us

Policies and ethics