Skip to main content

Elicitor Proteins from Trichoderma for Biocontrol Products

  • Chapter
  • First Online:
Advances in Trichoderma Biology for Agricultural Applications

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Trichoderma spp. are isolated from various ecological habitats and known to produce various enzymes and secondary metabolites with agriculture and industrial importance. Trichoderma spp. are applied as biological control agents (BCAs) to battle a wide array of plant diseases. The function of BCA is enabled through involvement of various mechanisms (mycoparasitism, release of antibiotic metabolites or enzymes, nutrient competition) and direct interactions of Trichoderma spp., plants, or pathogenic organism (induced plant immunity or resistance). The secondary metabolites or enzymes of Trichoderma are known to directly inhibiting the plant pathogenic organisms, while its elicitors trigger the plant immunity toward biotic stress. Trichoderma elicitors are directly or indirectly combat the plant disease either inhabiting the plant pathogenic microbes or activating the plant immunity related pathways, although several studies presented the mechanism of Trichoderma elicitors and plant interactions. Still the complete mechanism of Trichoderma elicitors in contest to BCAs is uncovered. Moreover, it is essential to gain the current status of Trichoderma elicitors and BCA potentials for the development of future research. Therefore, the present chapter reviews the recent updates on elicitor proteins from Trichoderma in BCAs and summarizes the key points and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    Article  CAS  Google Scholar 

  • Alba JM, Glas JJ, Schimmel BCJ, Kant MR (2011) Avoidance and suppression of plant defenses by herbivores and pathogens. J Plant Interact 6(4):221–227

    Article  Google Scholar 

  • Alonso-Ramírez A, Poveda J, Martín I, Hermosa R, Monte E, Nicolás C (2014) Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Mol Plant Pathol 15(8):823–831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker SE, Perrone G, Richardson NM, Gallo A, Kubicek CP (2012) Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma. Microbiology 158(1):147–154

    Article  CAS  PubMed  Google Scholar 

  • Baranski R, Klocke E, Nothnagel T (2008) Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156(9):513–521

    Article  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260

    PubMed  Google Scholar 

  • Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K (2017) Evolution of hormone signaling networks in plant defense. Annu Rev Phytopathol 55(1):401–425

    Article  CAS  PubMed  Google Scholar 

  • Bolton MD (2009) Current review: primary metabolism and plant defense-fuel for the fire. Mol Plant-Microbe Interact 22(5):487–497

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1(1):48

    Article  PubMed  CAS  Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147(2):779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C-H, Shen B-N, Shang Q-W, Liu L-YD, Peng K-C, Chen Y-H, Chen F-F, Hu S-F, Wang Y-T, Wang H-C, Wu H-Y, Lo C-T, Lin S-S (2018) Gene-to-gene network analysis of the mediation of plant innate immunity by the eliciting plant response-like 1 (Epl1) elicitor of Trichoderma formosa. Mol Plant-Microbe Interact 31(7):683–691

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149(3):1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6(10):1554–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crutcher FK, Moran-Diez ME, Ding S, Liu J, Horwitz BA, Mukherjee PK, Kenerley CM (2015) A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens. Fungal Biol 119(6):476–486

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Jiang N, Meng J, Hou X, Yang G, Luan Y (2018) Identification and characterization of defensin genes conferring Phytophthora infestans resistance in tomato. Physiol Mol Plant Pathol 103:28–35

    Article  CAS  Google Scholar 

  • Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19(8):838–853

    Article  PubMed  CAS  Google Scholar 

  • Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145(3):875–889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Druzhinina IS, Shelest E, Kubicek CP (2012) Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 337(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Elkelish AA, Alhaithloul HAS, Qari SH, Soliman MH, Hasanuzzaman M (2020) Pretreatment with Trichoderma harzianum alleviates waterlogging-induced growth alterations in tomato seedlings by modulating physiological, biochemical, and molecular mechanisms. Environ Exp Bot 171:103946

    Article  CAS  Google Scholar 

  • Faize M, Malnoy M, Dupuis F, Chevalier M, Parisi L, Chevreau E (2003) Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. Phytopathology 93(12):1496–1504

    Article  CAS  PubMed  Google Scholar 

  • Gomes EV, Costa MdN, de Paula RG, de Azevedo RR, da Silva FL, Noronha EF, Ulhoa CJ, Monteiro VN, Cardoza RE, Gutiérrez S, Silva RN (2015) The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Sci Rep 5(1):17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L, Herrera-Estrella A, Olmedo-Monfil V (2017) Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet 18(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V, Herrera-Estrella A (2019) Trichoderma species: versatile plant Symbionts. Phytopathology 109(1):6–16

    Article  PubMed  Google Scholar 

  • Harman GE, Kubicek CP (1998) Trichoderma and gliocladium, volume 2: Enzymes, biological control and commercial applications. CRC Press

    Book  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species - opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Herrera-Estrella AH, Horwitz BA, Lorito M (2012) Special issue: Trichoderma – from basic biology to biotechnology. Microbiology 158(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Mijiti G, Wang Z, Yu W, Fan H, Zhang R, Liu Z (2015) Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536. Microbiol Res 171:8–20

    Article  CAS  PubMed  Google Scholar 

  • J.D. Jones, J.L. Dangl, The plant immune system, nature 444(7117) (2006) 323–329

    Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12(4):R40–R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Parkhi V, Kenerley CM, Rathore KS (2009) Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta 230(2):277–291

    Article  CAS  PubMed  Google Scholar 

  • Loon LCv, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44(1):135–162

    Article  PubMed  CAS  Google Scholar 

  • López-Mondéjar R, Ros M, Pascual JA (2011) Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol Control 56(1):59–66

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from ‘omics to the field. Annu Rev Phytopathol 48(1):395–417

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Zhang D-D, Dong X-W, Zhao P-B, Chen L-L, Song X-Y, Wang X-J, Chen X-L, Shi M, Zhang Y-Z (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313(2):120–126

    Article  CAS  PubMed  Google Scholar 

  • Martinez C, Blanc F, Le Claire E, Besnard O, Nicole M, Baccou JC (2001) Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Plant Physiol 127(1):334–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathys J, De Cremer K, Timmermans P, Van Kerkhove S, Lievens B, Vanhaecke M, Cammue B, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Mendoza A, Zaid R, Lawry R, Hermosa R, Monte E, Horwitz BA, Mukherjee PK (2018) Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biol Rev 32(2):62–85

    Article  Google Scholar 

  • Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol Plant-Microbe Interact 22(8):1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Morán-Diez E, Rubio B, Domínguez S, Hermosa R, Monte E, Nicolás C (2012) Transcriptomic response of Arabidopsis thaliana after 24h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169(6):614–620

    Article  PubMed  CAS  Google Scholar 

  • Moscatiello R, Sello S, Ruocco M, Barbulova A, Cortese E, Nigris S, Baldan B, Chiurazzi M, Mariani P, Lorito M, Navazio L (2018) The Hydrophobin HYTLO1 secreted by the biocontrol fungus Trichoderma longibrachiatum triggers a NAADP-mediated calcium signalling pathway in Lotus japonicus. Int J Mol Sci 19(9):2596

    Article  PubMed Central  CAS  Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52(4):522–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51(1):105–129

    Article  CAS  PubMed  Google Scholar 

  • Nawrocka J, MaÅ‚olepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67(2):149–156

    Article  Google Scholar 

  • Nawrocka J, Snochowska M, Gajewska E, Pietrowska E, Szczech M, MaÅ‚olepsza U (2012) Activation of defense responses in cucumber and tomato plants by selected polish Trichoderma strains. J Fruit Ornament Plant Res 75(1):105–116

    Article  CAS  Google Scholar 

  • Nogueira-Lopez G, Greenwood DR, Middleditch M, Winefield C, Eaton C, Steyaert JM, Mendoza-Mendoza A (2018) The apoplastic secretome of Trichoderma virens during interaction with maize roots shows an inhibition of plant defence and scavenging oxidative stress secreted proteins. Front Plant Sci 9(409)

    Google Scholar 

  • Oljira AM, Hussain T, Waghmode TR, Zhao H, Sun H, Liu X, Wang X, Liu B (2020) Trichoderma enhances net photosynthesis, water use efficiency, and growth of wheat (Triticum aestivum L.) under salt stress. Microorganisms 8(10):1565

    Article  CAS  PubMed Central  Google Scholar 

  • Pozo MaJ, Baek J-M, García JM, Kenerley CM (2004) Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet Biol 41(3):336–348

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Valdespino CA, Casas-Flores S, Olmedo-Monfil V (2019) Trichoderma as a model to study effector-like molecules. Front Microbiol 10(1030)

    Google Scholar 

  • Rotblat B, Enshell-Seijffers D, Gershoni JM, Schuster S, Avni A (2002) Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J 32(6):1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Ruocco M, Lanzuise S, Lombardi N, Woo SL, Vinale F, Marra R, Varlese R, Manganiello G, Pascale A, Scala V, Turrà D, Scala F, Lorito M (2015) Multiple roles and effects of a novel Trichoderma hydrophobin. Mol Plant-Microbe Interact 28(2):167–179

    Article  CAS  PubMed  Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131(1):15–26

    Article  CAS  Google Scholar 

  • Salas-Marina MA, Isordia-Jasso MI, Islas-Osuna MA, Delgado-Sánchez P, Jiménez-Bremont JF, Rodríguez-Kessler M, Rosales-Saavedra MT, Herrera-Estrella A, Casas-Flores S (2015) The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Front Plant Sci 6(77)

    Google Scholar 

  • Saravanakumar K, Shanmuga Arasu V, Kathiresan K (2013) Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquat Bot 104:101–105

    Article  CAS  Google Scholar 

  • Saravanakumar K, Fan L, Fu K, Yu C, Wang M, Xia H, Sun J, Li Y, Chen J (2016) Cellulase from Trichoderma harzianum interacts with roots and triggers induced systemic resistance to foliar disease in maize. Sci Rep 6(1):35543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanakumar K, Li Y, Yu C, Wang Q-q, Wang M, Sun J, Gao J-x, Chen J (2017) Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci Rep 7(1):1771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saravanakumar K, MubarakAli D, Kathiresan K, Wang M-H (2018a) An evidence of fungal derived 1-aminocyclopropane-1-carboxylate deaminase promoting the growth of mangroves. Beni-Suef Univ J Basic Appl Sci 7(4):446–451

    Google Scholar 

  • Saravanakumar K, Wang S, Dou K, Lu Z, Chen J (2018b) Yeast two-hybrid and label-free proteomics based screening of maize root receptor to cellulase of Trichoderma harzianum. Physiol Mol Plant Pathol 104:86–94

    Article  CAS  Google Scholar 

  • Schirawski J, Perlin MH (2018) Plant–microbe interaction 2017—the good, the bad and the diverse. Int J Mol Sci 19(5):1374

    Article  PubMed Central  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo H-H, Park S, Park S, Oh B-J, Back K, Han O, Kim J-I, Kim YS (2014) Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper. PLoS One 9(5):e97936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah JM, Raghupathy V, Veluthambi K (2008) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett 31(2):239

    Article  PubMed  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48(1):21–43

    Article  CAS  PubMed  Google Scholar 

  • Sousa TPd, Chaibub AA, Silva GBd, Filippi MCCd (2020) Trichoderma asperellum modulates defense genes and potentiates gas exchanges in upland rice plants. Physiol Mol Plant Pathol 112:101561

    Article  CAS  Google Scholar 

  • Sun X, Sun M, Chao Y, Wang H, Pan H, Yang Q, Cui X, Lou Y, Zhuge Y (2021) Alleviation of lead toxicity and phytostimulation in perennial ryegrass by the Pb-resistant fungus Trichoderma asperellum SD-5. Funct Plant Biol 48(3):333–341

    Article  CAS  PubMed  Google Scholar 

  • Tandon A, Fatima T, Anshu D, Shukla P, Tripathi S, Srivastava PCS (2020) Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. J King Saud Univ - Sci 32(1):791–798

    Article  Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151(2):792–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velázquez-Robledo R, Contreras-Cornejo HA, Macías-Rodríguez L, Hernández-Morales A, Aguirre J, Casas-Flores S, López-Bucio J, Herrera-Estrella A (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Mol Plant-Microbe Interact 24(12):1459–1471

    Article  PubMed  CAS  Google Scholar 

  • Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7(4):249–258

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Harel M, Chet I (2004) Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol Lett 238(1):151–158

    CAS  PubMed  Google Scholar 

  • Wang Y, Song J, Wu Y, Odeph M, Liu Z, Howlett BJ, Wang S, Yang P, Yao L, Zhao L, Yang Q (2013) Eplt4 proteinaceous elicitor produced in Pichia pastoris has a protective effect against Cercosporidium sofinum infections of soybean leaves. Appl Biochem Biotechnol 169(3):722–737

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Mijiti G, Huang Y, Fan H, Wang Y, Liu Z (2018) Functional analysis of eliciting plant response protein Epl1-Tas from Trichoderma asperellum ACCC30536. Sci Rep 8(1):7974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25(2):139–150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017H1D3A1A01052610) and National Research Foundation of Korea (2019R1A1055452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong-Hyeon Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saravanakumar, K., Sathiyaseelan, A., Mariadoss, A.V.A., Wang, MH. (2022). Elicitor Proteins from Trichoderma for Biocontrol Products. In: Amaresan, N., Sankaranarayanan, A., Dwivedi, M.K., Druzhinina, I.S. (eds) Advances in Trichoderma Biology for Agricultural Applications. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-91650-3_7

Download citation

Publish with us

Policies and ethics