Skip to main content

Deep Factors of Ice Destruction of the Arctic Ocean

  • Conference paper
  • First Online:
Problems of Geocosmos–2020

Abstract

The analysis of satellite observations of annual and seasonal changes in the thickness of perennial Arctic ice in the period from 2007 to 2020 showed that the vertical fluid channels of deep-lying fault zones play an important role in the process of transformation and degradation of the ice cover. They contribute to the local destruction of ice with the formation of melt ponds, affect the variability of the thickness of perennial ice and the formation of the edge of ice of different ages. The results of the complex interpretation of magnetic anomalies, gravity anomalies, and seismic and seismological data allowed us to improve the model of the deep structure of the main tectonic structures of the Arctic Ocean. The directed influence of thermal flows of deep fault zones on the localization of ice cover destruction in the zones of fluid-carrying channels exits to the ocean bottom surface in the water area of the Northern Sea Route is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petrova, A.A.: Digital maps component of the magnetic field induction vector. In: Kuznetsov, V.D. (ed.) Proceedings of IZMIRAN Electromagnetic and Plasma Processes from the Depths of the Sun to the Depths of the Earth, pp. 412–423. IZMIRAN Pub, Moscow (2015)

    Google Scholar 

  2. Kopytenko, Yu.A., Petrova, A.A.: Results of the development and application of a component model of the Earth’s magnetic field in the interests of magnetic cartography and geophysics. Fundam. Appl. Hydrophys. 9(2), 88–106 (2016)

    Google Scholar 

  3. Kopytenko, Yu.A., Petrova, A.A.: World maps of the Earth’s magnetic field components of the epoch 2020. In: Proceedings of the XV All-Russian Conference Applied Technologies of Hydroacoustics and Hydrophysics, pp. 288–291, St. Petersburg (2020)

    Google Scholar 

  4. Bonvalot, S., Balmino, G., Briais, A., et al.: Gravity map of the world. Commission on the Geological Map of the World (eds.). BGI-CGMW-CNES-IRD, Paris (2012)

    Google Scholar 

  5. Petrova, A.A., Latysheva, O.V., Kopytenko, Yu.A.: Natural phenomena of endogenous origin in the Arctic Basin. Vestnik KRAUNTs Nauki Zemle 48(4), 37–53 (2020)

    Google Scholar 

  6. International Seismological Centre. On-line Bulletin. http://www.isc.ac.uk/iscbulletin. Last accessed 15 Mar 2021

  7. Center “Sever” FGBU AANI. http://www.aari.ru. Last accessed 30 Nov 2020

  8. Mercator Ocean International. http://bulletin.mercator-ocean.fr. Last accessed 09 Oct 2020

  9. Kupetsky, V.N.: The Ice of the Chukchi Seas, 58 p. MAOBTI, Magadan (1997)

    Google Scholar 

  10. Kupetsky, V.N.: We Will Return to the Arctic ..., 299 p. New Polygraphy, Magadan (2005)

    Google Scholar 

  11. Bogoyavlensky, V.I., Sizov, O.S., Bogoyavlensky, I.V., Nikonov, R.A., Kargina, T.N.: Earth degassing in the Arctic: comprehensive studies of the distribution of frost mounds and thermokarst lakes with gas blowout craters on the Yamal Peninsula. Arct. Ecol. Econ. 4(36), 52–68 (2019)

    Google Scholar 

  12. Bogoyavlenskiy, V.I., Bogoyavlenskiy, I.V., Nikonov, R.A.: Results of aerial, space and field investigations of large gas blowouts near Bovanenkovo field on Yamal peninsula. Arct. Ecol. Econ. 3(27), 4–17 (2017)

    Google Scholar 

  13. Repina, I.A., Tikhonov, V.V.: Melt pond on the sea ice surface during summer and its connection with Arctic climate change. Russ. Arct. 2, 15–30 (2018)

    Google Scholar 

  14. Shalina, E.V., Bobylev, L.P.: Changes in ice conditions in the Arctic according to satellite observations. Mod. Prob. Remote Sens. Earth Space 14(6), 28–41 (2017)

    Google Scholar 

  15. Yulin, A.V., Vyazigina, N.A., Egorova, E.S.: Interannual and seasonal variability of the ice area in the Arctic Ocean according to satellite observations. Russ. Arct. 7, 28–40 (2019)

    Google Scholar 

  16. Petrova, A.A., Kopytenko, Yu.A.: Fluid systems of the Mamsko-Bodayba mineragenic zone of Northern Transbaikalia. Vestnik KRAUNTs Nauki Zemle 41(1), 37–53 (2019)

    Article  Google Scholar 

  17. Kopytenko, Yu.A., Petrova, A.A.: Components of magnetic anomalies of the Amerasian basin. In: Proceedings of the XV All-Russian Conference Applied technologies of Hydroacoustics and Hydrophysics, pp. 292–295, St. Petersburg (2020)

    Google Scholar 

  18. Ouki, G.N., Saltus, R.V.: Geophysical analysis of the Alpha–Mendeleev ridge complex: characteristics of the high-altitude Arctic large magmatic province. Tectonophysics Part A, 65–84 (2016)

    Google Scholar 

  19. Thebault, E., Vigneron, P., Langlais, B., Hulot, G.: A Swarm lithospheric magnetic field model to SH degree 80. Earth Planets Space 68, 126 (2016)

    Google Scholar 

  20. Petrova, A.A., Latysheva, O.V.: Verification of the model of anomalies of the Arctic magnetic field components. In: Gliko, A.O., Baryakh, A.A., Lobanov, K.V., Bolotov, I.N. (eds.) Proceedings of the All-Russian Conference Global Problems of the Arctic and Antarctic, pp. 279–284. FECIAR UrB RAS, Arkhangelsk (2020)

    Google Scholar 

  21. Kopytenko, Y.A., Petrova, A.A., Guryev, I.S., Labetsky, P.V., Latysheva, O.V.: Analysis of the informativity of the Earth’s magnetic field in near-Earth space. Cosm. Res. 59(3), 143–156 (2021)

    Article  Google Scholar 

  22. Starostin, V.I., Isakov, E.D., Razin, L.V., Sakiya, D.R.: Prospects for the discovery of large and unique deposits of precious metals in the North-East of the Siberian platform. Vestnik Mosk. un-ta. Ser. 4. Geologiya 2, 34–43 (2016)

    Google Scholar 

  23. Stogniy, G.A., Stogniy, V.V.: The structure of the south-eastern framing of the North-Asian craton. In: Proceedings of the XXXVIII Tectonic Conference Tectonics of the Crust and Mantle. Tectonic Patterns of Mineral Placement, vol. 2, pp. 238–241. GEOS, Moscow (2005)

    Google Scholar 

  24. Simmons, N.A., Forte, A.M., Boschi, L., Grand, S.P.: Gypsum: a joint tomographic model of mantle density and seismic wave velocities. J. Geophys. Res. 115, B12310 (2010). https://doi.org/10.17611/DP/9991624

  25. Pavlenko, V.I.: Arctic zone of the Russian Federation in the system of ensuring national interests of the country. Arct. Ecol. Econ. 4(12), 16–25 (2013)

    Google Scholar 

  26. Shakhova, N., Semiletov, I., Chuvilin, E.: Understanding the permafrost–hydrate system and associated methane releases in the East Siberian arctic shelf. Geosciences 9, 251 (2019)

    Article  Google Scholar 

  27. Kopytenko, Yu.A., Latysheva, O.V., Petrova, A.A.: Influence of fault zones of the Earth's crust on the evolution of the thickness and edge of the Arctic ice cover. In: Proceedings of the Military Space Academy named after A. F. Mozhaisky, vol. 674, pp. 207–212 (2020)

    Google Scholar 

  28. NOAA/ESRL Physical Sciences Laboratory. http://psl.noaa.gov. Last accessed 15 Nov 2020

  29. Amante, C., Eakins, B.W.: ETOPO1 1 Arc-minute global relief model: procedures, data sources, and analysis. NOAA NESDIS NGDC-24 Technical Memorandum. National Geophysical Data Center, NOAA, pp. 1–19 (2009). https://doi.org/10.7289/V5C8276M

  30. Laxon, S.W., et al.: CryoSat-2 estimates of the thickness and volume of Arctic sea ice. Geophys. Res. Lett. 40(4), 732–737 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrova, A.A., Latysheva, O.V., Petrova, A.I. (2022). Deep Factors of Ice Destruction of the Arctic Ocean. In: Kosterov, A., Bobrov, N., Gordeev, E., Kulakov, E., Lyskova, E., Mironova, I. (eds) Problems of Geocosmos–2020. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-91467-7_4

Download citation

Publish with us

Policies and ethics