Skip to main content

Lane Marking Detection Techniques for Autonomous Driving

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2021)

Abstract

In this paper we address challenges facing lane marking detection and tracking. Lane marking detection along with vehicle positioning between lane boundaries are fundamental tasks to achieve safe and reliable autonomous driving systems. Despite the development of perception senors and clarity of the lane markings on roadways, the lane detection remains a challenge for researchers due to environmental factors that impact performance of lane’s recognition algorithms. In this paper we compare three different lane detection strategies based on rule and learning-based approaches using perception sensors. In contrast, we perform rule-based lane detection using camera and sensor fusion combining camera images and LiDAR’s point clouds. Moreover, we use the prominent lane detection learning-based approach LaneNet to detect lanes from images. However, when using the LaneNet, we investigate the network’s performance while excluding the perspective transformation network (H-Net). Our results show that learning-based lane detection methodologies outperforms rule-based methods and can accurately predict lanes when the vehicle is cruising on roads with steep curvatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    LaneNet implementation used: https://github.com/MaybeShewill-CV/lanenet-lane-detection.

  2. 2.

    TuSimple dataset: https://github.com/TuSimple/tusimple-benchmark.

References

  1. Chetan, N.B., Gong, J., Zhou, H., Bi, D., Lan, J., Qie, L.: An overview of recent progress of lane detection for autonomous driving. In: 2019 6th International Conference on Dependable Systems and Their Applications (DSA), pp. 341–346. IEEE (2020)

    Google Scholar 

  2. Aly, M.: Real time detection of lane markers in urban streets. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 7–12. IEEE (2008)

    Google Scholar 

  3. Chunyang, M., Ma, X.: Lane detection based on object segmentation and piecewise fitting. TELKOMNIKA Indones. J. Electr. Eng. TELKOMNIKA 12(5), 3491–3500 (2014)

    Google Scholar 

  4. Li, Y., Iqbal, A., Gans, N.R.: Multiple lane boundary detection using a combination of low-level image features. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1682–1687. IEEE (2014)

    Google Scholar 

  5. Andrade, D.C., et al.: A novel strategy for road lane detection and tracking based on a vehicle’s forward monocular camera. IEEE Trans. Intell. Transp. Syst. 20(4), 1497–1507 (2018)

    Article  MathSciNet  Google Scholar 

  6. Kim, J.-G., Yoo, J.-H., Koo, J.-C.: Road and lane detection using stereo camera. In: 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 649–652. IEEE (2018)

    Google Scholar 

  7. Kim, J., Lee, M.: Robust lane detection based on convolutional neural network and random sample consensus. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8834, pp. 454–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12637-1_57

    Chapter  Google Scholar 

  8. Lee, S., et al.: Vpgnet: vanishing point guided network for lane and road marking detection and recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1947–1955 (2017)

    Google Scholar 

  9. Kim, J., Park, C.: End-to-end ego lane estimation based on sequential transfer learning for self-driving cars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 30–38 (2017)

    Google Scholar 

  10. Li, J., Mei, X., Prokhorov, D., Tao, D.: Deep neural network for structural prediction and lane detection in traffic scene. IEEE Trans. Neural Networks Learn. Syst. 28(3), 690–703 (2016)

    Article  Google Scholar 

  11. Gurghian, A., Koduri, T., Bailur, S.V., Carey, K.J., Murali, V.N.: Deeplanes: end-to-end lane position estimation using deep neural networksa. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 38–45 (2016)

    Google Scholar 

  12. Oliveira, G.L., Burgard, W., Brox, T.: Efficient deep models for monocular road segmentation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4885–4891. IEEE (2016)

    Google Scholar 

  13. Yenıaydin, Y., Schmidt, K.W.: Sensor fusion of a camera and 2d lidar for lane detection. In: 2019 27th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE (2019)

    Google Scholar 

  14. Li, Q., Chen, L., Li, M., Shaw, S.-L., Nüchter, A.: A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios. IEEE Trans. Vehicular Technol. 63(2), 540–555 (2013)

    Article  Google Scholar 

  15. Han, X., Wang, H., Jianfeng, L., Zhao, C.: Road detection based on the fusion of lidar and image data. Int. J. Adv. Robot. Syst. 14(6), 1729881417738102 (2017)

    Article  Google Scholar 

  16. Xiao, L., Dai, B., Liu, D., Hu, T., Wu, T.: Crf based road detection with multi-sensor fusion. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 192–198. IEEE (2015)

    Google Scholar 

  17. Ahmed, A.N., Eckelmann, S., Anwar, A., Trautmann, T., Hellinckx, P.: Lane marking detection using LiDAR sensor. In: Barolli, L., Takizawa, M., Yoshihisa, T., Amato, F., Ikeda, M. (eds.) 3PGCIC 2020. LNNS, vol. 158, pp. 301–310. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61105-7_30

  18. Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M., Van Gool, L.: Towards end-to-end lane detection: an instance segmentation approach. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 286–291. IEEE (2018)

    Google Scholar 

  19. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147 (2016)

  20. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  21. Van Der Merwe, R., Wan, E.A.: The square-root unscented kalman filter for state and parameter-estimation. In: 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 6, pp. 3461–3464. IEEE (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed N. Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, A.N., Anwar, A., Eckelmann, S., Trautmann, T., Latré, S., Hellinckx, P. (2022). Lane Marking Detection Techniques for Autonomous Driving. In: Barolli, L. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2021. Lecture Notes in Networks and Systems, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-030-89899-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89899-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89898-4

  • Online ISBN: 978-3-030-89899-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics