Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 272))

  • 474 Accesses

Abstract

This chapter introduces the overarching topic of this monograph. After recalling the need for continuum mechanics, it contrasts the concepts of spatial and material forces and highlights why the latter are a necessary concept in various branches of defect mechanics. It then reviews various vistas on material forces before commenting on their computational implications.

8,035 m 35\(^\circ \)45’30"N 76\(^\circ \)39’12"E

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A descriptive definition of material forces due to Eshelby [30] is the following: ... the total energy of a system ... is a function of the set of parameters necessary to specify the configuration of the imperfections. The negative gradient of the total energy wrt the position of an imperfection may conveniently be called the force on it. This force, in a sense fictitious, is introduced to give a picturesque description of energy changes, and must not be confused with the ordinary surface and body forces acting on the material.

References

  1. Phillips R (2001) Crystals, defects and microstructures: modeling across scales. Cambridge University Press, Cambridge

    Google Scholar 

  2. Tadmor EB, Miller RE (2011) Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, Cambridge

    Google Scholar 

  3. Anand L, Govindjee S (2020) Continuum mechanics of solids. Oxford University Press, USA

    Book  Google Scholar 

  4. Antman SS (2005) Nonlinear problems of elasticity. Springer, Berlin

    Google Scholar 

  5. Bertram A (2012) Elasticity and plasticity of large deformations. Springer, Berlin

    Google Scholar 

  6. Ciarlet PG (1988) Mathematical Elasticity: Volume I: three-dimensional elasticity. North-Holland (1988)

    Google Scholar 

  7. Goriely A (2017) The mathematics and mechanics of biological growth. Springer, Berlin

    Google Scholar 

  8. Gurtin M, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge

    Google Scholar 

  9. Haupt P (2013) Continuum mechanics and theory of materials. Springer, Berlin

    Google Scholar 

  10. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York

    Google Scholar 

  11. Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice Hall, New Jersey

    Google Scholar 

  12. Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover, New York

    Google Scholar 

  13. Maugin GA (1999) The thermomechanics of nonlinear irreversible behaviors: an introduction. World Scientific, Singapore

    Google Scholar 

  14. Ogden RW (1997) Non-linear elastic deformations. Dover, New York

    Google Scholar 

  15. Silhavy M (2013) The mechanics and thermodynamics of continuous media. Springer, Berlin

    Google Scholar 

  16. Tadmor EB, Miller RE, Elliott RS (2012) Continuum mechanics and thermodynamics: from fundamental concepts to governing equations. Cambridge University Press, Cambridge

    Google Scholar 

  17. Truesdell C, Noll W (2004) The non-linear field theories of mechanics. Springer, Berlin

    Google Scholar 

  18. Steinmann P (2015) Geometrical foundations of continuum mechanics. Springer, Berlin

    Google Scholar 

  19. Maugin GA (1993) Material inhomogeneities in elasticity. Chapman and Hall, London

    Book  MATH  Google Scholar 

  20. Steinmann P, Smith A, Birang E, McBride A, Javili A (2021) Atomistic two-, three- and four-body potentials. Spatial and material settings. J Mech Phys Solids

    Google Scholar 

  21. Peach M, Koehler JS (1950) The forces exerted on dislocations and the stress fields produced by them. Phys Rev 80:436

    Article  MathSciNet  MATH  Google Scholar 

  22. Rogula D (1977) Forces in material space. Arch Mech 29:705–713

    MathSciNet  MATH  Google Scholar 

  23. Ericksen JL (1995) Remarks concerning forces on line defects. ZAMP: Zeitschrift für Angewandte Mathematik und Physik 46:247–271

    Google Scholar 

  24. Ericksen JL (1998) On nonlinear elasticity theory for crystal defects. Int J Plast 14:9–24

    Article  MATH  Google Scholar 

  25. Steinmann P (2002) On spatial and material settings of hyperelastostatic crystal defects. J Mech Phys Solids 50:1743–1766

    Article  MathSciNet  MATH  Google Scholar 

  26. Asaro RJ (1983) Crystal plasticity. J Appl Mech 50:921–934

    Article  MATH  Google Scholar 

  27. Steinmann P, Stein E (1996) On the numerical treatment and analysis of finite deformation ductile single crystal plasticity. Comput Methods Appl Mech Eng 129:235–254

    Article  MATH  Google Scholar 

  28. Steinmann P (1996) Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int J Eng Sci 34:1717–1735

    Article  MATH  Google Scholar 

  29. Miehe C, Schotte J (2017) Crystal plasticity and evolution of polycrystalline microstructure. In: Encyclopedia of computational mechanics, 2nd edn, pp 1–23

    Google Scholar 

  30. Eshelby JD (1951) The force on an elastic singularity. Philos Trans R Soc Lon. Ser A, Math Phys Sci 244:87–112

    Google Scholar 

  31. Zorski H (1981) Force on a defect in non-linear elastic medium. Int J Eng Sci 19:1573–1579

    Article  MATH  Google Scholar 

  32. Abeyaratne R, Knowles JK (1990) On the driving traction acting on a surface of strain discontinuity in a continuum. J Mech Phys Solids 38:345–360

    Article  MathSciNet  MATH  Google Scholar 

  33. Abeyaratne R, Knowles JK (1991) Kinetic relations and the propagation of phase boundaries in solids. Arch Ration Mech Anal 114:119–154

    Article  MathSciNet  MATH  Google Scholar 

  34. Abeyaratne R, Knowles JK (2000) A note on the driving traction acting on a propagating interface: adiabatic and non-adiabatic processes of a continuum. J Appl Mech 67:829–830

    Article  MATH  Google Scholar 

  35. Cherepanov GP (1967) Crack propagation in continuous media. PMM (Appl Math Mech, Translation from Russian) 31:467–488

    MATH  Google Scholar 

  36. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Article  Google Scholar 

  37. Maugin GA (1994) Eshelby stress in elastoplasticity and ductile fracture. Int J Plast 10:393–408

    Article  MATH  Google Scholar 

  38. Maugin GA (1994) On the J-integral and energy-release rates in dynamical fracture. Acta Mech 105:33–47

    Article  MathSciNet  MATH  Google Scholar 

  39. Gurtin M, Podio-Guidugli P (1996) Configurational forces and the basic laws for crack propagation. J Mech Phys Solids 44:905–927

    Article  MathSciNet  MATH  Google Scholar 

  40. Gurtin M, Podio-Guidugli P (1998) Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. J Mech Phys Solids 46:1343–1378

    Article  MathSciNet  MATH  Google Scholar 

  41. Agiasofitou E, Kalpakides VK (2006) The concept of a balance law for a cracked elastic body and the configurational force and moment at the crack tip. Int J Eng Sci 44:127–139

    Article  MathSciNet  MATH  Google Scholar 

  42. Knowles JK, Sternberg E (1972) On a class of conservation laws in linearized and finite elastostatics. Arch Ration Mech Anal 44:187–211

    Article  MathSciNet  MATH  Google Scholar 

  43. Budiansky B, Rice JR (1973) Conservation laws and energy-release rates. J Appl Mech 40:201–203

    Article  MATH  Google Scholar 

  44. Rice JR (1985) Conserved integrals and energetic forces. Fundamentals of deformation and fracture. Cambridge University Press, Cambridge, pp 33–56

    Google Scholar 

  45. Agiasofitou E, Lazar M (2017) Micromechanics of dislocations in solids: J-, M-, and L-integrals and their fundamental relations. Int J Eng Sci 114:16–40

    Article  MathSciNet  MATH  Google Scholar 

  46. Lazar M, Agiasofitou E (2018) Eshelbian dislocation mechanics: J-, m-, and l-integrals of straight dislocations. Mech Res Commun 93:89–95

    Article  Google Scholar 

  47. Kirchner H, Lazar M (2008) The thermodynamic driving force for bone growth and remodelling: a hypothesis. J R Soc Interface 5:183–193

    Article  Google Scholar 

  48. Maugin GA (1995) Material forces: concepts and applications. ASME Appl Mech Rev 48:213–245

    Article  Google Scholar 

  49. Maugin GA (2011) Configurational forces: thermomechanics, physics, mathematics, and numerics. CRC Press, Boca Raton

    MATH  Google Scholar 

  50. Gurtin M (1995) The nature of configurational forces. Arch Ration Mech Anal 131:67–100

    Article  MathSciNet  MATH  Google Scholar 

  51. Gurtin M (2000) Configurational forces as basic concepts of continuum physics. Springer, New York

    MATH  Google Scholar 

  52. Maugin GA (2013) Sixty years of configurational mechanics (1950–2010). Mech Res Commun 50:39–49

    Article  MathSciNet  Google Scholar 

  53. Askes H, Kuhl E, Steinmann P (2004) An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: Classification and applications. Comput Methods Appl Mech Eng 193:4223–4245

    Google Scholar 

  54. Kuhl E, Askes H, Steinmann P (2004) An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation. Comput Methods Appl Mech Eng 193:4207–4222

    Google Scholar 

  55. Kuhl E, Steinmann P (2005) A hyperelastodynamic ALE formulation based on referential, spatial and material settings of continuum mechanics. Acta Mech 174:201–222

    Article  MATH  Google Scholar 

  56. Runesson K, Larsson F, Steinmann P (2009) On energetic changes due to configurational motion of standard continua. Int J Solids Struct 46:1464–1475

    Article  MATH  Google Scholar 

  57. Golebiewska-Herrmann A (1981) On conservation laws of continuum mechanics. Int J Solids Struct 17:1–9

    Article  MathSciNet  MATH  Google Scholar 

  58. Golebiewska-Herrmann A (1982) Material momentum tensor and path-independent integrals of fracture mechanics. Int J Solids Struct 18:319–326

    Article  MATH  Google Scholar 

  59. Golebiewska-Herrmann A (1983) On the lagrangian formulation of continuum mechanics. Physica A 118:300–314

    Article  MathSciNet  MATH  Google Scholar 

  60. Maugin GA, Epstein M, Trimarco C (1992) Pseudomomentum and material forces in inhomogeneous materials: application to the fracture of electromagnetic materials in electromagnetoelastic fields. Int J Solids Struct 29:1889–1900

    Article  MathSciNet  MATH  Google Scholar 

  61. Maugin GA, Trimarco C (1992) Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture. Acta Mech 94:1–28

    Article  MathSciNet  MATH  Google Scholar 

  62. Kalpakides VK, Maugin GA (2004) Canonical formulation and conservation laws of thermoelasticity without dissipation. Rep Math Phys 53:371–391

    Article  MathSciNet  MATH  Google Scholar 

  63. Maugin GA, Kalpakides VK (2002) A Hamiltonian formulation for elasticity and thermoelasticity. J Phys A: Math Gen 35:10775

    Article  MathSciNet  MATH  Google Scholar 

  64. Steinmann P (2002) On spatial and material settings of hyperelastodynamics. Acta Mech 156:193–218

    Article  MATH  Google Scholar 

  65. Steinmann P (2008) On boundary potential energies in deformational and configurational mechanics. J Mech Phys Solids 56:772–800

    Article  MathSciNet  MATH  Google Scholar 

  66. Yavari A, Marsden JE, Ortiz M (2006) On spatial and material covariant balance laws in elasticity. J Math Phys 47:042903

    Article  MathSciNet  MATH  Google Scholar 

  67. Lazar M, Kirchner H (2006) The Eshelby tensor in nonlocal elasticity and in nonlocal micropolar elasticity. J Mech Mater Struct 1:325–337

    Article  Google Scholar 

  68. Lazar M, Kirchner H (2007) The Eshelby stress tensor, angular momentum tensor and dilatation flux in gradient elasticity. Int J Solids Struct 44:2477–2486

    Article  MathSciNet  MATH  Google Scholar 

  69. Lazar M, Maugin GA (2007) On microcontinuum field theories: the Eshelby stress tensor and incompatibility conditions. Phil Mag 87:3853–3870

    Article  Google Scholar 

  70. Gupta A, Markenscoff X (2008) Configurational forces as dissipative mechanisms: a revisit. CR Mec 336:126–131

    Article  MATH  Google Scholar 

  71. Gupta A, Markenscoff X (2012) A new interpretation of configurational forces. J Elast 108:225–228

    Article  MathSciNet  MATH  Google Scholar 

  72. Dascalu C, Maugin GA (1993) Material forces and energy-release rates in homogeneous elastic bodies with defects. Comptes Rendus de l’Académie des Sciences II(317):1135–1140

    MATH  Google Scholar 

  73. Steinmann P, Scherer M, Denzer R (2009) Secret and joy of configurational mechanics: from foundations in continuum mechanics to applications in computational mechanics. ZAMM - J Appl Math Mech 89:614–630

    Article  MATH  Google Scholar 

  74. Noether E (1918) Invariante Variationsprobleme. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 2:235–257

    MATH  Google Scholar 

  75. Sanders JL (1960) On the Griffith-Irwin fracture theory. J Appl Mech 27:352–353

    Article  MathSciNet  MATH  Google Scholar 

  76. Günther W (1962) Über einige Randintegrale der Elastomechanik. Abh Braunschw Wiss Ges 14:53–72

    MATH  Google Scholar 

  77. Fletcher DC (1976) Conservation laws in linear elastodynamics. Arch Ration Mech Anal 60:329–353

    Article  MathSciNet  MATH  Google Scholar 

  78. Buggisch H, Gross D, Krüger KH (1981) Einige Erhaltungssätze der Kontinuumsmechanik vom J-Integral-Typ. Ingenieur-Archiv 50:103–111

    Article  MATH  Google Scholar 

  79. Francfort G, Golebiewska-Herrmann A (1982) Conservation laws and material momentum in thermoelasticity. J Appl Mech 49:710–714

    Article  MathSciNet  MATH  Google Scholar 

  80. Francfort G, Golebiewska-Herrmann A (1986) A contour integral and an energy release rate in thermoelasticity. Int J Solids Struct 22:759–766

    Article  MATH  Google Scholar 

  81. Olver PJ (1984) Conservation laws in elasticity. Arch Ration Mech Anal 85:111–129

    Article  MathSciNet  MATH  Google Scholar 

  82. Cherepanov GP (1989) A remark on the dynamic invariant or path-independent integral. Int J Solids Struct 25:1267–1269

    Article  MATH  Google Scholar 

  83. Simo JC, Honein T (1990) Variational formulation, discrete conservation laws, and path-domain independent integrals for elasto-viscoplasticity. J Appl Mech 57:488–497

    Article  MathSciNet  MATH  Google Scholar 

  84. Honein T, Herrmann G (1997) Conservation laws in nonhomogeneous plane elastostatics. J Mech Phys Solids 45:789–805

    Article  MathSciNet  MATH  Google Scholar 

  85. Shield RT (1967) Inverse deformation results in finite elasticity. ZAMP: Zeitschrift für angewandte Mathematik und Physik 18:490–500

    Google Scholar 

  86. Chadwick P (1975) Applications of an energy-momentum tensor in non-linear elastostatics. J Elast 5:249–258

    Article  MathSciNet  MATH  Google Scholar 

  87. Govindjee S, Mihalic PA (1996) Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng 136:47–57

    Article  MATH  Google Scholar 

  88. Govindjee S, Mihalic PA (1998) Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int J Numer Meth Eng 43:821–838

    Article  MATH  Google Scholar 

  89. Kalpakides VK, Balassas KG (2005) The inverse deformation mapping in the finite element method. Phil Mag 85:4257–4275

    Article  Google Scholar 

  90. Kuhl E, Askes H, Steinmann P (2006) An illustration of the equivalence of the loss of ellipticity conditions in spatial and material settings of hyperelasticity. Eur J Mech-A/Solids 25:199–214

    Article  MathSciNet  MATH  Google Scholar 

  91. Kalpakides VK, Agiasofitou E (2002) On material equations in second gradient electroelasticity. J Elasticity Phys Sci Solids 67:205–227

    MathSciNet  MATH  Google Scholar 

  92. Kirchner N, Steinmann P (2007) On the material setting of gradient hyperelasticity. Math Mech Solids 12:559–580

    Article  MathSciNet  MATH  Google Scholar 

  93. Steinmann P, Ricker S, Aifantis E (2011) Unconstrained and Cauchy-Born-constrained atomistic systems: deformational and configurational mechanics. Arch Appl Mech 81:669–684

    Article  MATH  Google Scholar 

  94. Birang SE, Steinmann P (2021) Discrete configurational mechanics for the computational study of atomistic fracture mechanics. Forces Mech 2:100009

    Google Scholar 

  95. Steinmann P (2000) Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int J Solids Struct 37:7371–7391

    Google Scholar 

  96. Steinmann P (2002) On spatial and material settings of thermo-hyperelastodynamics. J Elast 66:109–157

    Article  MathSciNet  MATH  Google Scholar 

  97. Dascalu C, Maugin GA (1995) The thermoelastic material-momentum equation. J Elast 39:201–212

    Article  MathSciNet  MATH  Google Scholar 

  98. Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16:951–978

    Article  MATH  Google Scholar 

  99. Kuhl E, Steinmann P (2003) On spatial and material settings of thermo-hyperelastodynamics for open systems. Acta Mech 160:179–217

    Article  MATH  Google Scholar 

  100. Kuhl E, Steinmann P (2003) Theory and numerics of geometrically non-linear open system mechanics. Int J Numer Meth Eng 58:1593–1615

    Article  MathSciNet  MATH  Google Scholar 

  101. Kuhl E, Steinmann P (2004) Computational modeling of healing: an application of the material force method. Biomech Model Mechanobiol 2:187–203

    Article  Google Scholar 

  102. Kuhl E, Steinmann P (2004) Material forces in open system mechanics. Comput Methods Appl Mech Eng 193:2357–2381

    Article  MathSciNet  MATH  Google Scholar 

  103. Steinmann P, McBride A, Bargmann S, Javili A (2012) A deformational and configurational framework for geometrically non-linear continuum thermomechanics coupled to diffusion. Int J Non-Linear Mech 47:215–227

    Article  Google Scholar 

  104. Quiligotti S, Maugin GA, Dell’Isola F (2003) An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mech 160:45–60

    Article  MATH  Google Scholar 

  105. Papastavrou A, Steinmann P (2010) On deformational and configurational poro-mechanics: dissipative versus non-dissipative modelling of two-phase solid/fluid mixtures. Arch Appl Mech 80:969–984

    Article  MATH  Google Scholar 

  106. Vu DK, Steinmann P (2007) Nonlinear electro-and magneto-elastostatics: material and spatial settings. Int J Solids Struct 44:7891–7905

    Article  MATH  Google Scholar 

  107. Vu DK, Steinmann P (2010) Material and spatial motion problems in nonlinear electro-and magneto-elastostatics. Math Mech Solids 15:239–257

    Article  MathSciNet  MATH  Google Scholar 

  108. Vu DK, Steinmann P (2012) On the spatial and material motion problems in nonlinear electro-elastostatics with consideration of free space. Math Mech Solids 17:803–823

    Article  MathSciNet  MATH  Google Scholar 

  109. Menzel A, Steinmann P (2005) A note on material forces in finite inelasticity. Arch Appl Mech 74:800–807

    Article  MATH  Google Scholar 

  110. Menzel A, Steinmann P (2007) On configurational forces in multiplicative elastoplasticity. Int J Solids Struct 44:4442–4471

    Article  MathSciNet  MATH  Google Scholar 

  111. Tillberg J, Larsson F, Runesson K (2010) On the role of material dissipation for the crack-driving force. Int J Plast 26:992–1012

    Article  MATH  Google Scholar 

  112. Özenç K, Kaliske M, Lin G, Bhashyam G (2014) Evaluation of energy contributions in elasto-plastic fracture: a review of the configurational force approach. Eng Fract Mech 115:137–153

    Article  Google Scholar 

  113. Cermelli P, Fried E (1997) The influence of inertia on configurational forces in a deformable solid. Proc R Soc Lond. Ser A: Math, Phys Eng Sci 453:1915–1927

    Google Scholar 

  114. Mariano PM (2000) Configurational forces in continua with microstructure. ZAMP: Zeitschrift für angewandte Mathematik und Physik 51:752–791

    Google Scholar 

  115. Kalpakides VK, Dascalu C (20002) On the configurational force balance in thermomechanics. Proc R Soc Lond. Ser A: Math, Phys Eng Sci 458:3023–3039

    Google Scholar 

  116. Podio-Guidugli P (2001) Configurational balances via variational arguments. Interfaces Free Bound 3:223–232

    MathSciNet  MATH  Google Scholar 

  117. Podio-Guidugli P (2002) Configurational forces: are they needed? Mech Res Commun 29:513–519

    Article  MathSciNet  MATH  Google Scholar 

  118. Fried E, Gurtin M (2003) The role of the configurational force balance in the nonequilibrium epitaxy of films. J Mech Phys Solids 51:487–517

    Article  MathSciNet  MATH  Google Scholar 

  119. Eshelby JD (1975) The elastic energy-momentum tensor. J Elast 5:321–335

    Article  MathSciNet  MATH  Google Scholar 

  120. Hill R (1986) Energy-momentum tensors in elastostatics: some reflections on the general theory. J Mech Phys Solids 34:305–317

    Article  MathSciNet  MATH  Google Scholar 

  121. Epstein M, Maugin GA (1990) The energy-momentum tensor and material uniformity in finite elasticity. Acta Mech 83:127–133

    Article  MathSciNet  MATH  Google Scholar 

  122. Maugin GA, Epstein M (1991) The electroelastic energy–momentum tensor. Proc R Soc Lond. Ser A: Math, Phys Eng Sci 433:299–312

    Google Scholar 

  123. Maugin GA (2013) Continuum mechanics of electromagnetic solids. Elsevier, Amsterdam

    Google Scholar 

  124. Pelteret JP, Steinmann P (2019) Magneto-active polymers: fabrication, characterisation, modelling and simulation at the micro-and macro-scale. Walter de Gruyter

    Google Scholar 

  125. Kienzler R, Herrmann G (1997) On the properties of the Eshelby tensor. Acta Mech 125:73–91

    Article  MathSciNet  MATH  Google Scholar 

  126. Kienzler R, Herrmann G (2000) Mechanics in material space: with applications to defect and fracture mechanics. Springer, Berlin

    Google Scholar 

  127. Kienzler R, Herrmann G (2002) Fracture criteria based on local properties of the Eshelby tensor. Mech Res Commun 29:521–527

    Article  MathSciNet  MATH  Google Scholar 

  128. Brünig M (2004) Eshelby stress tensor in large strain anisotropic damage mechanics. Int J Mech Sci 46:1763–1782

    Article  MATH  Google Scholar 

  129. Verron E, Le Cam JB, Gornet L (2006) A multiaxial criterion for crack nucleation in rubber. Mech Res Commun 33:493–498

    Article  MATH  Google Scholar 

  130. Andriyana A, Verron E (2007) Prediction of fatigue life improvement in natural rubber using configurational stress. Int J Solids Struct 44:2079–2092

    Article  MATH  Google Scholar 

  131. Verron E, Andriyana A (2008) Definition of a new predictor for multiaxial fatigue crack nucleation in rubber. J Mech Phys Solids 56:417–443

    Article  MathSciNet  MATH  Google Scholar 

  132. Verron E (2010) Configurational mechanics: a tool to investigate fracture and fatigue of rubber. Rubber Chem Technol 83:270–281

    Article  Google Scholar 

  133. Previati G, Kaliske M (2012) Crack propagation in pneumatic tires: continuum mechanics and fracture mechanics approaches. Int J Fatigue 37:69–78

    Article  Google Scholar 

  134. Ackermann D, Barth FJ, Steinmann P (1999) Theoretical and computational aspects of geometrically nonlinear problems in fracture mechanics. In: Proceedings (CD-ROM) of the European conference on computational mechanics ECCM’99 (ECCOMAS), August 31 to September 3, Munich, Germany

    Google Scholar 

  135. Steinmann P, Ackermann D, Barth FJ (2001) Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. Int J Solids Struct 38:5509–5526

    Google Scholar 

  136. Denzer R, Barth FJ, Steinmann P (2003) Studies in elastic fracture mechanics based on the material force method. Int J Numer Meth Eng 58:1817–1835

    Article  MATH  Google Scholar 

  137. Denzer R, Scherer M, Steinmann P (2007) An adaptive singular finite element in nonlinear fracture mechanics. Int J Fract 147:181–190

    Article  MATH  Google Scholar 

  138. Kuhl E, Denzer R, Barth FJ, Steinmann P (2004) Application of the material force method to thermo-hyperelasticity. Comput Methods Appl Mech Eng 193:3303–3325

    Article  MathSciNet  MATH  Google Scholar 

  139. Bargmann S, Denzer R, Steinmann P (2009) Material forces in non-classical thermo-hyperelasticity. J Therm Stresses 32:361–393

    Article  Google Scholar 

  140. Liebe T, Denzer R, Steinmann P (2003) Application of the material force method to isotropic continuum damage. Comput Mech 30:171–184

    Article  MATH  Google Scholar 

  141. Nguyen TD, Govindjee S, Klein PA, Gao H (2005) A material force method for inelastic fracture mechanics. J Mech Phys Solids 53:91–121

    Article  MathSciNet  MATH  Google Scholar 

  142. Näser B, Kaliske M, Müller R (2007) Material forces for inelastic models at large strains: application to fracture mechanics. Comput Mech 40:1005–1013

    Article  MATH  Google Scholar 

  143. Menzel A, Denzer R, Steinmann P (2004) On the comparison of two approaches to compute material forces for inelastic materials. Application to single-slip crystal-plasticity. Comput Methods Appl Mech Eng 193:5411–5428

    Google Scholar 

  144. Menzel A, Denzer R, Steinmann P (2005) Material forces in computational single-slip crystal-plasticity. Comput Mater Sci 32:446–454

    Article  Google Scholar 

  145. Kuhn C, Lohkamp R, Schneider F, Aurich J, Müller R (2015) Finite element computation of discrete configurational forces in crystal plasticity. Int J Solids Struct 56:62–77

    Article  Google Scholar 

  146. Kuhn C, Müller R (2016) A discussion of fracture mechanisms in heterogeneous materials by means of configurational forces in a phase field fracture model. Comput Methods Appl Mech Eng 312:95–116

    Article  MathSciNet  MATH  Google Scholar 

  147. Hirschberger CB, Kuhl E, Steinmann P (2007) On deformational and configurational mechanics of micromorphic hyperelasticity-theory and computation. Comput Methods Appl Mech Eng 196:4027–4044

    Article  MathSciNet  MATH  Google Scholar 

  148. Floros D, Larsson F, Runesson K (2018) On configurational forces for gradient-enhanced inelasticity. Comput Mech 61:409–432

    Article  MathSciNet  MATH  Google Scholar 

  149. Kolling S, Müller R (2005) On configurational forces in short-time dynamics and their computation with an explicit solver. Comput Mech 35:392–399

    Article  MATH  Google Scholar 

  150. Timmel M, Kaliske M, Kolling S, Müller R (2011) On configurational forces in hyperelastic materials under shock and impact. Comput Mech 47:93–104

    Article  MathSciNet  MATH  Google Scholar 

  151. Denzer R, Menzel A (2014) Configurational forces for quasi-incompressible large strain electro-viscoelasticity-application to fracture mechanics. Eur J Mech-A/Solids 48:3–15

    Article  MathSciNet  MATH  Google Scholar 

  152. Ricker S, Mergheim J, Steinmann P (2009) On the multiscale computation of defect driving forces. Int J Multiscale Comput Eng 7:457–474

    Article  Google Scholar 

  153. Ricker S, Mergheim J, Steinmann P, Müller R (2010) A comparison of different approaches in the multi-scale computation of configurational forces. Int J Fract 166:203–214

    Article  MATH  Google Scholar 

  154. Braun M (1997) Configurational forces induced by finite-element discretization. Proc Estonian Acad Sci, Phys Math 46:24–31

    MATH  Google Scholar 

  155. Braun M (2007) Configurational forces in discrete elastic systems. Arch Appl Mech 77:85–93

    Article  MATH  Google Scholar 

  156. Müller R, Maugin GA (2002) On material forces and finite element discretizations. Comput Mech 29:52–60

    Article  MathSciNet  MATH  Google Scholar 

  157. Gross D, Kolling S, Müller R, Schmidt I (2003) Configurational forces and their application in solid mechanics. Eur J Mech-A/Solids 22:669–692

    Article  MathSciNet  MATH  Google Scholar 

  158. Heintz P, Larsson F, Hansbo P, Runesson K (2004) Adaptive strategies and error control for computing material forces in fracture mechanics. Int J Numer Meth Eng 60:1287–1299

    Article  MATH  Google Scholar 

  159. Müller R, Gross D, Maugin GA (2004) Use of material forces in adaptive finite element methods. Comput Mech 33:421–434

    Article  MATH  Google Scholar 

  160. Müller R, Kolling S, Gross D (2002) On configurational forces in the context of the finite element method. Int J Numer Meth Eng 53:1557–1574

    Article  MathSciNet  MATH  Google Scholar 

  161. Thoutireddy P, Ortiz M (2004) A variational r-adaption and shape-optimization method for finite-deformation elasticity. Int J Numer Meth Eng 61:1–21

    Article  MathSciNet  MATH  Google Scholar 

  162. Mosler J, Ortiz M (2006) On the numerical implementation of variational arbitrary lagrangian-eulerian (VALE) formulations. Int J Numer Meth Eng 67:1272–1289

    Article  MathSciNet  MATH  Google Scholar 

  163. Mosler J, Ortiz M (2007) Variational h-adaption in finite deformation elasticity and plasticity. Int J Numer Meth Eng 72:505–523

    Article  MathSciNet  MATH  Google Scholar 

  164. Tabarraei A, Sukumar N (2007) Adaptive computations using material forces and residual-based error estimators on quadtree meshes. Comput Methods Appl Mech Eng 196:2657–2680

    Article  MathSciNet  MATH  Google Scholar 

  165. Scherer M, Denzer R, Steinmann P (2007) Energy-based r-adaptivity: a solution strategy and applications to fracture mechanics. Int J Fract 147:117–132

    Article  MATH  Google Scholar 

  166. Scherer M, Denzer R, Steinmann P (2008) On a solution strategy for energy-based mesh optimization in finite hyperelastostatics. Comput Methods Appl Mech Eng 197:609–622

    Article  MathSciNet  MATH  Google Scholar 

  167. Rajagopal A, Sivakumar SM (2007) A combined rh adaptive strategy based on material forces and error assessment for plane problems and bimaterial interfaces. Comput Mech 41:49–72

    Article  MATH  Google Scholar 

  168. Askes H, Bargmann S, Kuhl E, Steinmann P (2005) Structural optimization by simultaneous equilibration of spatial and material forces. Commun Numer Methods Eng 21:433–442

    Article  MATH  Google Scholar 

  169. Materna D, Barthold FJ (2007) Variational design sensitivity analysis in the context of structural optimization and configurational mechanics. Int J Fract 147:133–155

    Article  MATH  Google Scholar 

  170. Materna D, Barthold FJ (2008) On variational sensitivity analysis and configurational mechanics. Comput Mech 41:661–681

    Article  MathSciNet  MATH  Google Scholar 

  171. Materna D, Barthold FJ (2009) Configurational variations for the primal and dual problem in elasticity. ZAMM: Zeitschrift für Angewandte Mathematik und Mechanik 89:666–676

    Google Scholar 

  172. Riehl S, Steinmann P (2014) An integrated approach to shape optimization and mesh adaptivity based on material residual forces. Comput Methods Appl Mech Eng 278:640–663

    Article  MathSciNet  MATH  Google Scholar 

  173. Gross D, Müller R, Kolling S (2002) Configurational forces-morphology evolution and finite elements. Mech Res Commun 29:529–536

    Article  MathSciNet  MATH  Google Scholar 

  174. Kolling S, Baaser H, Gross D (2002) Material forces due to crack-inclusion interaction. Int J Fract 118:229–238

    Article  Google Scholar 

  175. Kolling S, Müller R, Gross D (2003) A computational concept for the kinetics of defects in anisotropic materials. Comput Mater Sci 26:87–94

    Article  Google Scholar 

  176. Timmel M, Kaliske M, Kolling S (2009) Modelling of microstructural void evolution with configurational forces. ZAMM: Zeitschrift für Angewandte Mathematik und Mechanik 89:698–708

    Google Scholar 

  177. Fagerström M, Larsson R (2006) Theory and numerics for finite deformation fracture modelling using strong discontinuities. Int J Numer Meth Eng 66:911–948

    Article  MathSciNet  MATH  Google Scholar 

  178. Fagerström M, Larsson R (2008) Approaches to dynamic fracture modelling at finite deformations. J Mech Phys Solids 56:613–639

    Article  MathSciNet  MATH  Google Scholar 

  179. Larsson R, Fagerström M (2005) A framework for fracture modelling based on the material forces concept with xfem kinematics. Int J Numer Meth Eng 62:1763–1788

    Article  MATH  Google Scholar 

  180. Heintz P (2006) On the numerical modelling of quasi-static crack growth in linear elastic fracture mechanics. Int J Numer Meth Eng 65:174–189

    Article  MathSciNet  MATH  Google Scholar 

  181. Mahnken R (2007) Material forces for crack analysis of functionally graded materials in adaptively refined fe-meshes. Int J Fract 147:269–283

    Article  MATH  Google Scholar 

  182. Mahnken R (2009) Geometry update driven by material forces for simulation of brittle crack growth in functionally graded materials. Int J Numer Meth Eng 77:1753–1788

    Article  MathSciNet  MATH  Google Scholar 

  183. Gürses E, Miehe C (2009) A computational framework of three-dimensional configurational-force-driven brittle crack propagation. Comput Methods Appl Mech Eng 198:1413–1428

    Article  MATH  Google Scholar 

  184. Miehe C, Gürses E (2007) A robust algorithm for configurational-force-driven brittle crack propagation with r-adaptive mesh alignment. Int J Numer Meth Eng 72:127–155

    Article  MathSciNet  MATH  Google Scholar 

  185. Miehe C, Gürses E, Birkle M (2007) A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization. Int J Fract 145:245–259

    Article  MATH  Google Scholar 

  186. Schütte H (2009) Curved crack propagation based on configurational forces. Comput Mater Sci 46:642–646

    Article  Google Scholar 

  187. Brouzoulis J, Larsson F, Runesson K (2011) Strategies for planar crack propagation based on the concept of material forces. Comput Mech 47:295–304

    Article  MathSciNet  MATH  Google Scholar 

  188. Özenç K, Chinaryan G, Kaliske M (2016) A configurational force approach to model the branching phenomenon in dynamic brittle fracture. Eng Fract Mech 157:26–42

    Article  Google Scholar 

  189. Özenç K, Kaliske M (2014) An implicit adaptive node-splitting algorithm to assess the failure mechanism of inelastic elastomeric continua. Int J Numer Meth Eng 100(9):669–688

    Article  MathSciNet  MATH  Google Scholar 

  190. Kaczmarczyk Ł, Nezhad MM, Pearce C (2014) Three-dimensional brittle fracture: configurational-force-driven crack propagation. Int J Numer Meth Eng 97:531–550

    Article  MathSciNet  MATH  Google Scholar 

  191. Kaczmarczyk Ł, Ullah Z, Pearce C (2017) Energy consistent framework for continuously evolving 3d crack propagation. Comput Methods Appl Mech Eng 324:54–73

    Article  MathSciNet  MATH  Google Scholar 

  192. Bird R, Coombs W, Giani S (2018) A quasi-static discontinuous Galerkin configurational force crack propagation method for brittle materials. Int J Numer Meth Eng 113:1061–1080

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Steinmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steinmann, P. (2022). Introduction. In: Spatial and Material Forces in Nonlinear Continuum Mechanics. Solid Mechanics and Its Applications, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-030-89070-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89070-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89069-8

  • Online ISBN: 978-3-030-89070-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics