Skip to main content

Evolution of Aerospace Composite Materials

  • Chapter
  • First Online:
Advanced Composites in Aerospace Engineering Applications
  • 3414 Accesses

Abstract

The composite materials utilized in the aerospace sector are discussed in this chapter. Fabrication of aviation materials begins with the use of natural composite materials, such as wood. The aerospace industries are then dominated by steel, which is followed by the plastic era. There has been significant development made on composite materials for aircraft due to concerns about lightweight aircraft structures, fuel efficiency, and high-strength aircraft structures and certain demands on high-temperature requirements. In the aircraft structure, composites such as polymer matrix composite (PMC), metal matrix composite (MMC), and ceramic matrix composite (CMC) were used. Composite materials were used to construct nearly half of the aircraft’s construction. Composite materials have evolved with improved reinforcing fillers that can improve composite qualities, thanks to cutting-edge technologies. Materials used in the composite include nanofiller, natural fibers, and self-healing materials. There was a thorough discussion of the various types of composites. Finally, in this chapter, the future of aerospace composite materials was examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Airbus. (2011). Airbus looks ahead to 2050 and beyond. Retrieved from https://www.airbus.com/newsroom/news/en/2011/06/airbus-looks-ahead-to-2050-and-beyond.html.

  • Ajmal, N., Saraswat, K., Afroz Bakht, M., et al. (2018). Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: Characterization, in vitro antibacterial, antioxidant activities. Green Chemistry Letters and Reviews, 12(3), 244–254.

    Google Scholar 

  • Alexiadis, A., Alberini, F., & Meyer, M. E. (2017). Geopolymers from lunar and martian soil simulants. Advances in Space Research, 59(1), 490–495.

    CAS  Google Scholar 

  • Al-Fatlawi, A., Jármai, K., & Kovács, G. (2021). Optimal design of a fiber-reinforced plastic composite sandwich structure for the base plate of aircraft pallets in order to reduce weight. Polymers, 13(5), 834.

    CAS  Google Scholar 

  • Al-Ghanem, T. M. (1999). Contribution of aviation to global warming. Intergovernmental Panel on Climate Change (IPCC), 1–2.

    Google Scholar 

  • Amir Faiz, M. S., Che Azurahanim, C. A., Raba’ah, S. A., et al. (2020). Low cost and green approach in the reduction of graphene oxide (GO) using palm oil leaves extract for potential in industrial applications. Results in Physics, 16, 1–7.

    Google Scholar 

  • Amiri, A., Burkart, V., Yu, A., et al. (2018). The potential of natural composite materials in structural design. In Sustainable composites for aerospace applications (pp. 269–291). Woodhead Publishing.

    Google Scholar 

  • Aziz, M. S., & El Sherif, A. Y. (2015). Biomimicry as an approach for bio-inspired structure with the aid of computation. Alexandria Engineering Journal, 55(1), 707–714.

    Google Scholar 

  • Bagherpour, S. (2012). Fibre reinforced polyester composites (pp. 135–166). InTech.

    Google Scholar 

  • Bellonte M (2001) Composite materials in the Airbus A380-from history to future. International conference of composite materials (pp. 1–5).

    Google Scholar 

  • Bond, I. P., Trask, R. S., & Williams, H. R. (2008). Self healing fibre-reinforced polymer composites. MRS Bulletin, 33(8), 770–774.

    CAS  Google Scholar 

  • Chahl, J., Chitsaz, N., Mclvor, B., et al. (2021). Biomimetic drones inspired by dragonflies will require a systems based approach and insights from biology. Drones, 5(2), 24.

    Google Scholar 

  • Cooke, T. F. (1991). Inorganic fibers: A literature review. Journal of the American Ceramic Society, 74(12), 2959–2978.

    CAS  Google Scholar 

  • Coope, T. S., Wass, D. F., Trask, R. S., & Bond, I. P. (2013). Metal triflates as catalytic curing agents in self-healing fibre reinforced polymer composite materials. Macromolecular Materials and Engineering, 299(2), 208–218.

    Google Scholar 

  • Das, R., Melchior, C., & Karumbaiah, K. M. (2016). Chapter 11: Self-healing composites for aerospace applications. In S. Rana & R. Fangueiro (Eds.), Advanced composite materials for aerospace engineering. processing, properties and applications. Woodhead Publishing.

    Google Scholar 

  • Deshmukh, K., Houkan, M. T., AlMaadeed, M. A., et al. (2020). Chapter 1- introduction to 3D and 4D printing technology: State of the art and recent trends. In K. K. Sadasivuni, K. Deshmukh, & M. A. Almaadeed (Eds.), 3D and 4D printing of polymer nanocomposite materials, processes, applications and challenges. Elsevier.

    Google Scholar 

  • Eichhorn, S. (2021). Transparent wood is coming, and it could make an energy-efficient alternative to glass. Retrieved from https://theconversation.com/transparent-wood-is-coming-and-it-could-make-an-energy-efficient-alternative-to-glass-154981

  • Francesconi, A., Giacomuzzo, C., Grande, A. M., et al. (2013). Comparison of self-healing ionomer to aluminium-alloy bumpers for protecting spacecraft equipment from space debris impacts. Advances in Space Research, 51(5), 930–940.

    CAS  Google Scholar 

  • GarcĂ­a, I., Zubia, J., Durana, G., Aldabaldetreku, G., Illarramendi, M. A., & Villatoro, J. (2015). Optical fiber sensors for aircraft structural health monitoring. Sensors, 15(7), 15494–15519.

    Google Scholar 

  • Gaier, J., & Jaworske, D. A. (2007). Lunar dust on heat rejection system surfaces: Problems and prospects. NASA STAIF, 26, 1–13.

    Google Scholar 

  • Gomez-Campos, A., Vialle, C., Rouilly, A., et al. (2021). Natural fibre polymer composites-a game changer for the aviation sector? Journal of Cleaner Production, 286, 124986.

    CAS  Google Scholar 

  • Goossens, S., De Pauw, B., Geernaert, T., Salmanpour, M. S., Khodaei, Z. S., Karachalios, E., Saenz-Castillo, D., Thienpont, H., & Berghmans, F. (2019). Aerospace-grade surface mounted optical fibre strain sensor for structural health monitoring on composite structures evaluated against in-flight conditions. Smart Materials and Structures, 28(6), 1–13.

    Google Scholar 

  • Hamdy, A. S., Doench, I., & Moehwald, H. (2011). Intelligent self-healing corrosion resistant vanadia coating for AA2024. Thin Solid Films, 520, 5.

    Google Scholar 

  • Huang, W. M., Ding, Z., Wang, C. C., et al. (2010). Shape memory materials. Materials Today, 13(7–8), 54–61.

    CAS  Google Scholar 

  • ICAO. (2020). New ICAO aircraft CO2 standard one step close to final adoption. Retrieved from https://www.icao.int/Newsroom/Pages/New-ICAO-Aircraft-CO2-Standard-One-Step-Closer-To-Final-Adoption.aspx

  • Jawad, M. (2019). Manufactured by nature: Growing generatively designed products. Virginia Commonwealth University. (Thesis).

    Google Scholar 

  • Keshavarz, M., Idris, M. H., & Ahmad, N. (2013). Mechanical properties of stabilized zirconia nanocrystalline EB-PVD coating evaluated by micro and nano indentation. Journal of Advanced Ceramics, 2(4), 333–340.

    CAS  Google Scholar 

  • Khiat, A., Lamarque, F., Prelle, C., et al. (2010). Two-dimension fiber optic sensor for high-resolution and long-range linear measurements. Sensors and Actuators A, 158(1), 43–50.

    CAS  Google Scholar 

  • King, D., Inderwildi, O., & Carey, C. (2009). Advanced aerospace materials: Past, present and future. Aviation and the Environment, 3(9), 22–27.

    Google Scholar 

  • Lange B (2019). Lifting the lid on the global market forecast: Cities, airports & aircraft. Airbus. 2019.

    Google Scholar 

  • Lau, K., Hung, P., Zhu, M., et al. (2018). Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, 222–233.

    CAS  Google Scholar 

  • Lequeu, P., Lassince, P., & Warner, T. (2007). Aluminum alloy development for the Airbus A380-part 2. Advanced Materials and Processes, 165(7), 41–44.

    Google Scholar 

  • Mabe, J. H., Calkins, F. T., & Alkislar, M. B. (2008). Variable area jet nozzle using shape memory alloy actuators in an antagonistic design. In Industrial and commercial applications of smart structures technologies (Vol. 6930). International Society for Optics and Photonics.

    Google Scholar 

  • Maitra, S., & Roy, J. (2018). Chapter 3: Nanoceramic matrix composites: Types, processing, and applications. In I. M. Low (Ed.), Advances in ceramic matrix composites. Woodhead Publishing.

    Google Scholar 

  • Matta, M., Smith, S., Baumgardner, J., et al. (2009). The sodium tail of the mood. Icarus, 204(2), 409–417.

    CAS  Google Scholar 

  • Measures, R. M. (1993). Fiber optic sensing for composite smart structures. Composites Engineering, 3(7–8), 715–750.

    Google Scholar 

  • Menon, C., Ayre, M., & Ellery, A. (2006). Biomimetics: A new approach for space system design. ESA Bulletin, 125, 20–26.

    Google Scholar 

  • Michel U (2011) The benefits of variable area fan nozzles on turbofan engines. In Conference: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition AIAA 2011-0266. Orlando, Florida.

    Google Scholar 

  • Milne, S. (2014). Nanocomposites in aerospace. Retrieved from https://www.azonano.com/article.aspx?ArticleID=3258

  • Mouritz, A. P. (2012). Chapter 13: Polymers for aerospace structures. In A. P. Mouritz (Ed.), Introduction to aerospace materials. Woodhead Publishing.

    Google Scholar 

  • Murayama, H., Kageyama, K., Uzawa, K., et al. (2011). Strain monitoring of a single-lap joint with embedded fiber-optic distributed sensors. Structural Health Monitoring, 11(3), 325–344.

    Google Scholar 

  • Naslain, R. R., & Pomeroy, M. R. (2016). Ceramic matrix composites: Matrices and processing. Reference Module in Materials Science and Materials Engineering, 1060–1066.

    Google Scholar 

  • Neogi, D., Douglas, C., & Smith, D. R. (1998). Experimental development of self-deployable structures. International Journal of Space Structures, 13(3), 157–169.

    Google Scholar 

  • Neogi, D., & Douglas, C. D. (1995). Design and development of a self deployable structural element. International Journal of Space Structures, 10(2), 77–87.

    Google Scholar 

  • Nichols, J. M., Trickey, S. T., Seaver, M., et al. (2007). Use of fiber-optic strain sensors and holder exponents for detecting and localizing damage in an experimental plate structure. Journal of Intelligent Material Systems and Structures, 18(1), 51–67.

    CAS  Google Scholar 

  • Pan, C., Han, Y., & Lu, J. (2020). Design and optimization of lattice structures: A review. Applied Sciences, 10, 1–36.

    Google Scholar 

  • Pang, C., Yu, M., Gupta, A. K., et al. (2013). Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks. Smart Structures and Systems, 12(1), 23–39.

    Google Scholar 

  • Pang, J. W. C., & Bond, I. P. (2005). Hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Composites Science and Technology, 65(11), 1791–1799.

    CAS  Google Scholar 

  • Pank, D. R., & Jackson, J. J. (1993). Metal-matrix composite processing technologies for aircraft engine applications. Journal of Materials Engineering and Performance, 2(3), 341–346.

    CAS  Google Scholar 

  • Panzera, T. H., Jeannin, T., Gabrion, X., et al. (2020). Static, fatigue and impact behaviour of an autoclaved flax fibre reinforced composite for aerospace engineering. Composites Part B: Engineering, 197, 108049.

    CAS  Google Scholar 

  • Pelin, C., Ion, D., Stefan, A., et al. (2012). Nanocomposite as advanced materials for aerospace industry. Incas Bulletin, 4(4), 57–72.

    Google Scholar 

  • Piccirillo, A. (1998). Heinkel and the turbojet engine-origin of the first jet fighter. In AIAA and SAE, 1998 world aviation conference (5598).

    Google Scholar 

  • Pierce, R. S., & Falzon, B. G. (2017). Simulating resin infusion through textile reinforcement materials for the manufacture of complex composite structures. Engineering, 3(5), 596–607.

    CAS  Google Scholar 

  • Pilehvar, S., Arnhof, M., Pamies, R., et al. (2019). Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. Journal of Cleaner Production, 247, 1–9.

    Google Scholar 

  • Qin, Q. H. (2015). Chapter 1: Introduction to the composite and its toughening mechanisms. In Q. Qin & J. Ye (Eds.), Toughening mechanisms in composite materials.

    Google Scholar 

  • Quan, D., & Xu, H. (2015). Shape memory alloy in various aviation field. Procedia Engineering, 99, 1241–1246.

    CAS  Google Scholar 

  • Rawal, S. P. (2001). Metal-matrix composites for space applications. The Journal of Minerals, Metals & Materials Society (TMS), 53(4), 14–17.

    CAS  Google Scholar 

  • Rey, N., Tillman, G., Miller, R. M., et al. (2001). Shape memory alloy actuation for a variable area fan nozzle. In Proceedings of the SPIE 4332, smart structures and materials 2001: Industrial and commercial applications of smart structures technologies (14 June 2001). https://doi.org/10.1117/12.429677

    Chapter  Google Scholar 

  • Rich, S. C. (2012). Aircraft design inspired by nature and enabled by Tech. Retrieved from https://www.smithsonianmag.com/arts-culture/aircraft-design-inspired-by-nature-and-enabled-by-tech-25222971/.

  • Ryerson, M. S., & Hansen, M. (2013). Capturing the impact of fuel price on jet aircraft operating costs with Leontief technology and econometric models. Transportation Research Part C: Emerging Technologies, 33, 282–296.

    Google Scholar 

  • Sane, S. P. (2016). Bioinspiration and biomimicry: What can engineers learn from biologist? Journal of Applied Sciences, 19(1), 1–6.

    Google Scholar 

  • Santo, L., Quadrini, F., Accettura, A., et al. (2014). Shape memory composites for self-deployable structures in aerospace applications. Procedia Engineering, 88, 42–47.

    Google Scholar 

  • Sargent, G. (2019). From tree to chair without the carpentry: UK couple grows furniture. Retrieved from https://www.reuters.com/article/us-britain-furniture-sustainability-idUSKBN1W80R0

  • Silva-Munñoz, R. A., & Lopez-Anido, R. A. (2009). Structural health monitoring of marine composite structural joints using embedded fiber Bragg grating strain sensors. Composite Structures, 89(2), 224–234.

    Google Scholar 

  • Singh, B., Kumar, R., & Chohan, J. S. (2020). Polymer matrix composites in 3D printing: A state of art review. Materials Today: Proceedings, 33, 1562–1567.

    CAS  Google Scholar 

  • Smith, R. J., Lewi, G. J., & Yates, D. H. (2001). Development and application of nickel alloys in aerospace engineering. Aircraft Engineering and Aerospace Technology, 73(2).

    Google Scholar 

  • Sokolowski, W. M., Chmielewski, A. B., Hayashi, S., et al. (1999). Cold hibernated elastic memory (CHEM) self-deployable structures. NASA jet Propulsion Laboratory JPL, pp. 1–7.

    Google Scholar 

  • Sokolowski, W. M., Tan, S. C., & Pryor, M. K. (2004). Lightweight shape memory self-deployable structures for gossamer applications. In 45th AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics and materials conference, 19–22 April 2004, Palm Springs, CA.

    Google Scholar 

  • Song, G., Ma, N., Lee, H., et al. (2007). Design and control of a proof-of-concept variable area exhaust nozzle using shape-memory alloy actuators. Smart Materials and Structures, 16(4), 1342.

    Google Scholar 

  • Soutis, C. (2005). Fibre reinforced composites in aircraft construction. Progress in Aerospace Science, 41(2), 143–151.

    Google Scholar 

  • Subash, A., & Kandasubramanian, B. (2020). 4D printing of shape memory polymers. European Polymer Journal, 134, 1–17.

    Google Scholar 

  • Tan, W. C., Kiew, J. C., Siow, Z. R., et al. (2008). Self healing of epoxy composite for aircraft’s structural applications. Solid State Phenomena, 136, 39–44.

    CAS  Google Scholar 

  • Timmis, A. J., Hodzic, A., Koh, L., et al. (2015). Environmental impact assessment of aviation emission reduction through the implementation of composite materials. The International Journal of Life Cycle Assessment, 20(2), 233–243.

    CAS  Google Scholar 

  • Tserpes, K., Tzatzadakis, V., & Bachmann, J. (2020). Electrical conductivity and electromagnetic shielding effectiveness of bio-composites. Journal of Composites Science, 4(1), 28.

    CAS  Google Scholar 

  • Vijayaram, T. R., & Baskaralal, V. P. M. (2016). A review on the processing methods, properties and applications of metal matrix composites. International Journal of Engineering Research and Technology, 45–51.

    Google Scholar 

  • White, S. R., Sottos, N. R., Geubelle, P. H., et al. (2001). Autonomic healing of polymers composites. Nature, 409, 794–797.

    CAS  Google Scholar 

  • Williams, G., Trask, R., & Bond, I. (2007). A self-healing carbon fibre reinforced polymer for aerospace applications. Composites Part A: Applied Science and Manufacturing, 38(6), 1525–1532.

    Google Scholar 

  • Xia, Q., Chen, C., Li, T., et al. (2021). Solar assisted fabrication of large-scale, patternable transparent wood. Science Advances, 7(5), 1–8.

    Google Scholar 

  • Xue, C., Li, W., Li, J., et al. (2018). A review study on encapsulation-based self-healing for cementitious materials. Structural Concrete, 20(1), 198–212.

    Google Scholar 

  • Zhao, M., Zhang, L., & Pan, W. (2012). Properties of Yttria-stabilized-zirconia based ceramic composite abradable coatings. Key Engineering Materials, 512–515, 1551–1554.

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Universiti Putra Malaysia (UPM), particularly the Department of Aerospace Engineering, the Institute of Nanoscience and Nanotechnology (ION2), Institute of Tropical Forestry and Forest Products (INTROP), and Aerospace Malaysia Research Center (AMRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Norkhairunnisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Norkhairunnisa, M., Chai Hua, T., Sapuan, S.M., Ilyas, R.A. (2022). Evolution of Aerospace Composite Materials. In: Mazlan, N., Sapuan, S., Ilyas, R. (eds) Advanced Composites in Aerospace Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-88192-4_18

Download citation

Publish with us

Policies and ethics