Skip to main content

Seasonal Animal Migrations and the Arctic: Ecology, Diversity, and Spread of Infectious Agents

  • Chapter
  • First Online:
Arctic One Health

Abstract

Many animals are highly mobile and have evolved long-distance migrations that make them actors in multiple ecosystems through the year and throughout their life. Most long-distance migrations are adaptations to seasonality and more generally to spatio-temporal patterns in food availability, weather, risk of parasite and pathogen infections, and predation risk. Due to the considerable seasonality in high-latitude environments, with Arctic as extremes, long-distance seasonal migrations are a distinct characteristic of the fauna in these Northern regions. The Arctic is also a seasonal melting pot during the productive summer, when large numbers of organism move in from all over the world. Travelling animals connect ecosystems and serve as spatial vectors, of energy and nutrients and of other organisms that follow (sometimes as active hitchhikers) for parts or the entire route. We provide an overview of central concepts and main spatial and temporal (phenology) patterns of animal migrations, with a focus on migrations to and from as well as within northern regions (i.e. arctic and sub-arctic regions). In particular, we characterize the role of migratory animals as vectors and hosts for infectious agents, and we discuss the concepts of migratory escape, migratory culling, and migratory separation. Understanding drivers and patterns of migrations is essential for understanding the dynamics of diseases and must therefore be considered in veterinary and human medicine and the One Health perspective. We show how climate change and human stressors impact migrations and how these changes may interact with the animals’ capacity to transport parasites and other infectious agents. Throughout, we stress the evolutionary ecology of migrations, a plastic trait under natural selection with complex ecological consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alerstam T, Bäckman J (2018) Ecology of animal migration. Curr Biol 28:R968–R972

    Article  CAS  PubMed  Google Scholar 

  • Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260

    Article  Google Scholar 

  • Altizer S, Bartel R, Han BA (2011) Animal migration and infectious disease risk. Science 331:296–302

    Article  CAS  PubMed  Google Scholar 

  • Baker AJ, Gonzalez PM, Piersma T, Niles LJ, do Nascimento IDS, Atkinson PW, Clark NA, CDT M, Peck MK, Aarts G (2004) Rapid population decline in red knots: fitness consequences of decreased refuelling rates and late arrival in Delaware Bay. Proc R Soc B 271:875–882

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandara K, Varpe Ø, Wijewardene L, Tverberg V, Eiane K (2021) Two hundred years of zooplankton vertical migration research. Biol Rev 96:1547–1589

    Article  PubMed  Google Scholar 

  • Battley PF, Warnock N, Tibbitts TL, Gill RE, Piersma T, Hassell CJ, Douglas DC, Mulcahy DM, Gartrell BD, Schuckard R, Melville DS, Riegen AC (2012) Contrasting extreme long-distance migration patterns in bar-tailed godwits Limosa lapponica. J Avian Biol 43:21–32

    Article  Google Scholar 

  • Bauer S, Hoye BJ (2014) Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344:54-+

    Google Scholar 

  • Bauer S, Gienapp P, Madsen J (2008a) The relevance of environmental conditions for departure decision changes en route in migrating geese. Ecology 89:1953–1960

    Article  PubMed  Google Scholar 

  • Bauer S, Van Dinther M, Hogda K-A, Klaassen M, Madsen J (2008b) The consequences of climate-driven stop-over sites changes on migration schedules and fitness of Arctic geese. J Anim Ecol 77:654–660

    Article  PubMed  Google Scholar 

  • Bauer S, Nolet BA, Giske J, Chapman JW, Åkesson S, Hedenström A, Fryxell JM (2011) Cues and decision rules in animal migration. In: Milner-Gulland EJ, Fryxell JM, Sinclair ARE (eds) Animal migration: a synthesis, vol 68. Oxford University Press, pp 68–87

    Google Scholar 

  • Bauer S, Lisovski S, Hahn S (2016) Timing is crucial for consequences of migratory connectivity. Oikos 125:605–612

    Article  Google Scholar 

  • Bauer S, Lisovski S, Eikelenboom-Kil RJ, Shariati M, Nolet BA (2018) Shooting may aggravate rather than alleviate conflicts between migratory geese and agriculture. J Appl Ecol

    Google Scholar 

  • Bauer S, McNamara JM, Barta Z (2020) Environmental variability, reliability of information and the timing of migration. Proc R Soc B 287

    Google Scholar 

  • Becker DJ, Ketterson ED, Hall RJ (2020) Reactivation of latent infections with migration shapes population-level disease dynamics. Proc R Soc B Biol Sci 287:20201829

    Article  Google Scholar 

  • Berger J (2004) The last mile: how to sustain long-distance migration in mammals. Conserv Biol 18:320–331

    Article  Google Scholar 

  • Betini GS, Fitzpatrick MJ, Norris DR (2015) Experimental evidence for the effect of habitat loss on the dynamics of migratory networks. Ecol Lett 18:526–534

    Article  PubMed  Google Scholar 

  • Binning SA, Roche DG, Layton C (2013) Ectoparasites increase swimming costs in a coral reef fish. Biol Lett 9

    Google Scholar 

  • Binning SA, Shaw AK, Roche DG (2017) Parasites and host performance: incorporating infection into our understanding of animal movement. Integr Comp Biol 57:267–280

    Article  PubMed  Google Scholar 

  • Brierley AS, Fernandes PG, Brandon MA, Armstromg F, Millard NW, McPhail SD, Stevenson P, Pebody M, Perrett J, Squires M, Bone DG, Griffiths G (2002) Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge. Science 295:1890–1892

    Article  CAS  PubMed  Google Scholar 

  • Buehler DM, Tieleman BI, Piersma T (2010) How do migratory species stay healthy over the annual cycle? A conceptual model for immune function and for resistance to disease. Integr Comp Biol 50:346–357

    Article  PubMed  Google Scholar 

  • Burnham RE (2020) Whale geography: a species-centric approach applied to migration. Progr Phys Geogr-Earth Environ 44:419–434

    Article  Google Scholar 

  • Burr ZM, Varpe Ø, Anker-Nilssen T, Erikstad KE, Descamps S, Barrett RT, Bech C, Christensen-Dalsgaard S, Lorentsen S-H, Moe B, Reiertsen TK, Strøm H (2016) Later at higher latitudes: large-scale variability in seabird breeding timing and synchronicity. Ecosphere 7:1–12

    Article  Google Scholar 

  • Butler RW, Davidson NC, Morrison RIG (2001) Global-scale shorebird distribution in relation to productivity of near-shore ocean waters. Waterbirds 24:224–232

    Article  Google Scholar 

  • CAFF (2018) A global audit of the status and trends of Arctic and northern hemisphere goose populations. In: Fox AD, Leafloor JO (eds) Conservation of Arctic flora and fauna. International Secretariat, Akureyri

    Google Scholar 

  • Calambokidis J, Steiger GH, Straley JM, Herman LM, Cerchio S, Salden DR, Urban J, Jacobsen JK, von Ziegesar O, Balcomb KC, Gabriele CM, Dahlheim ME, Uchida S, Ellis G, Miyamura Y, de Guevara PL, Yamaguchi M, Sato F, Mizroch SA, Schlender L, Rasmussen K, Barlow J, Quinn TJ (2001) Movements and population structure of humpback whales in the North Pacific. Mar Mamm Sci 17:769–794

    Article  Google Scholar 

  • Chapman BB, Brönmark C, Nilsson J-Å, Hansson L-A (2011) The ecology and evolution of partial migration. Oikos 120:1764–1775

    Article  Google Scholar 

  • Chapman BB, Hulthén K, Wellenreuther M, Hansson L-A, Nilsson J-Å, Brönmark C (2014) Patterns of animal migration. Animal movement across scales. Oxford Universtiy Press, Oxford, pp 11–35

    Book  Google Scholar 

  • Chaulk KG, Mahoney ML (2012) Does spring ice cover influence nest initiation date and clutch size in common eiders? Polar Biol 35:645–653

    Article  Google Scholar 

  • Chudzinska ME, Nabe-Nielsen J, Nolet BA, Madsen J (2016) Foraging behaviour and fuel accumulation of capital breeders during spring migration as derived from a combination of satellite- and ground-based observations. J Avian Biol 47:563–574

    Article  Google Scholar 

  • Churchwell RT, Kendall SJ, Blanchard AL, Dunton KH, Powell AN (2016) Natural disturbance shapes benthic intertidal macroinvertebrate communities of high Latitude River deltas. Estuar Coasts 39:798–814

    Article  Google Scholar 

  • Claireaux M, dos Santos Schmidt TC, Olsen EM, Slotte A, Varpe Ø, Heino M, Enberg K (2020) Eight decades of adaptive changes in herring reproductive investment: the joint effect of environment and exploitation. ICES J Mar Sci

    Google Scholar 

  • Clapham PJ, Mead JG (1999) Megaptera novaeangliae. Mamm Species 1–9

    Google Scholar 

  • Clark GF, Stark JS, Johnston EL, Runcie JW, Goldsworthy PM, Raymond B, Riddle MJ (2013) Light-driven tipping points in polar ecosystems. Glob Change Biol 19:3749–3761

    Article  Google Scholar 

  • Clausen P, Green M, Alerstam T (2003) Energy limitations for spring migration and breeding: the case of brent geese Branta bernicla tracked by satellite telemetry to Svalbard and Greenland. Oikos 103:426–445

    Article  Google Scholar 

  • Clemens RS, Rogers DI, Hansen BD, Gosbell K, Minton CDT, Straw P, Bamford M, Woehler EJ, Milton DA, Weston MA, Venables B, Weller D, Hassell C, Rutherford B, Onton K, Herrod A, Studds CE, Choi CY, Dhanjal-Adams KL, Murray NJ, Skilleter GA, Fuller RA (2016) Continental-scale decreases in shorebird populations in Australia. Emu-Austral Ornithol 116:119–135

    Article  Google Scholar 

  • Cohen JM, Lajeunesse MJ, Rohr JR (2018) A global synthesis of animal phenological responses to climate change. Nat Clim Chang 8:224–228

    Article  Google Scholar 

  • Colbeck GJ, Duchesne P, Postma LD, Lesage V, Hammill MO, Turgeon J (2013) Groups of related belugas (Delphinapterus leucas) travel together during their seasonal migrations in and around Hudson Bay. Proc R Soc B 280

    Google Scholar 

  • Colwell MA (2010) Shorebird ecology, conservation, and management. University of California Press

    Book  Google Scholar 

  • Conover RJ (1988) Comparative life histories in the genera Calanus and Neocalanus in high-latitudes of the northern hemisphere. Hydrobiologia 167:127–142

    Article  Google Scholar 

  • Corkeron PJ, Connor RC (1999) Why do baleen whales migrate? Mar Mamm Sci 15:1228–1245

    Article  Google Scholar 

  • Cryan PM, Gorresen PM, Hein CD, Schirmacher MR, Diehl RH, Huso MM, Hayman DTS, Fricker PD, Bonaccorso FJ, Johnson DH, Heist K, Dalton DC (2014) Behavior of bats at wind turbines. Proc Natl Acad Sci USA 111:15126–15131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darling JD, McSweeney DJ (1985) Observations on the migrations of North Pacific humpback whales (Megaptera novaeangliae). Can J Zool 63:308–314

    Article  Google Scholar 

  • Dingle H (2014) Migration – the biology of life on the move. Oxford University Press

    Book  Google Scholar 

  • Doiron M, Gauthier G, Lévesque E (2015) Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Glob Change Biol 21:4364–4376

    Article  Google Scholar 

  • Dragesund O, Johannessen A, Ulltang O (1997) Variation in migration and abundance of Norwegian spring spawning herring (Clupea harengus L.). Sarsia 82:97–105

    Article  Google Scholar 

  • Drent RJ, Fox AD, Stahl J (2006) Travelling to breed. J Ornithol 147:122–134

    Article  Google Scholar 

  • Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP, Eguiluz VM, Erbe C, Gordon TAC, Halpern BS, Harding HR, Havlik MN, Meekan M, Merchant ND, Miksis-Olds JL, Parsons M, Predragovic M, Radford AN, Radford CA, Simpson SD, Slabbekoorn H, Staaterman E, Van Opzeeland IC, Winderen J, Zhang X, Juanes F (2021) The soundscape of the Anthropocene Ocean. Science 371:eaba4658

    Google Scholar 

  • DuBowy PJ (1988) Waterfowl communities and seasonal environments: temporal variability in interspecific competition. Ecology 69:1439–1453

    Article  Google Scholar 

  • Ebbinge BS, Spaans B (1995) The importance of body reserves accumulated in spring staging areas in the temperate zone for breeding in dark-bellied brent geese Branta b. bernicla in the high arctic. J Avian Biol 26:105–113

    Article  Google Scholar 

  • Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci USA 107:2078–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmenegger T et al (2018) Blood parasites prevalence of migrating passerines increases over the spring passage period. J Zool 306:23–27

    Article  Google Scholar 

  • Fancy SG, Pank LF, Whitten KR, Regelin WL (1989) Seasonal movements of caribou in arctic Alaska as determined by satellite. Can J Zool 67:644–650

    Article  Google Scholar 

  • Fauchald P, Mauritzen M, Gjøsæter H (2006) Density-dependent migratory waves in the marine pelagic ecosystem. Ecology 87:2915–2924

    Article  PubMed  Google Scholar 

  • Ferguson SH, Higdon JW, Chmelnitsky EG (2010) The rise of killer whales as a major Arctic predator. In: Ferguson SH, Loseto LL, Mallory ML (eds) A little less Arctic: top predators in the world’s largest northern Inland Sea, Hudson Bay. Springer, Dordrecht, pp 117–136

    Chapter  Google Scholar 

  • Finney BP, Gregory-Eaves I, Sweetman J, Dougas MSV, Smol JP (2000) Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years. Science 290:795–799

    Article  CAS  PubMed  Google Scholar 

  • Fjelldal MA, Layton-Matthews K, Lee AM, Grotan V, Loonen M, Hansen BB (2020) High-Arctic family planning: earlier spring onset advances age at first reproduction in barnacle geese. Biol Lett 16

    Google Scholar 

  • Flemming SA, Nol E, Kennedy LV, Smith PA (2019) Hyperabundant herbivores limit habitat availability and influence nest site selection of Arctic-breeding birds. J Appl Ecol 56:976–987

    Article  Google Scholar 

  • Fokkema W, van der Jeugd HP, Lameris TK, Dokter AM, Ebbinge BS, de Roos AM, Nolet BA, Piersma T, Olff H (2020) Ontogenetic niche shifts as a driver of seasonal migration. Oecologia 193:285–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Forseth T, Barlaup BT, Finstad B, Fiske P, Gjoaester H, Falkegard M, Hindar A, Mo TA, Rikardsen AH, Thorstad EB, Vollestad LA, Wennevik V (2017) The major threats to Atlantic salmon in Norway. ICES J Mar Sci 74:1496–1513

    Article  Google Scholar 

  • Fox AD, Madsen J, Boyd H, Kuijken E, Norriss DW, Tombre IM, Stroud DA (2005) Effects of agricultural change on abundance, fitness components and distribution of two arctic-nesting goose populations. Glob Change Biol 11:881–893

    Article  Google Scholar 

  • Fox AD, Elmberg J, Tombre IM, Hessel R (2017) Agriculture and herbivorous waterfowl: a review of the scientific basis for improved management. Biol Rev 92:854–877

    Article  PubMed  Google Scholar 

  • Fox AD, Ebbinge BS, Mitchell C, Heinicke T, Aarvak T, Colhoun K, Clausen P, Dereliev S, Faragó S, Koffijberg K, Kruckenberg H, Loonen MJJE, Madsen J, Mooij J, Musil P, Nilsson L, Pihl S, van der Jeugd H (2019) Current estimates of goose population sizes in western Europe, a gap analysis and an assessment of trends. Ornis Svecica 20:115–127

    Google Scholar 

  • Freitas C, Kovacs KM, Ims RA, Fedak MA, Lydersen C (2008) Ringed seal post-moulting movement tactics and habitat selection. Oecologia 155:193–204

    Article  PubMed  Google Scholar 

  • Frick WF, Baerwald EF, Pollock JF, Barclay RMR, Szymanski JA, Weller TJ, Russell AL, Loeb SC, Medellin RA, McGuire LP (2017) Fatalities at wind turbines may threaten population viability of a migratory bat. Biol Conserv 209:172–177

    Article  Google Scholar 

  • Gaston AJ, Gilchrist HG, Mallory ML (2005) Variation in ice conditions has strong effects on the breeding of marine birds at Prince Leopold Island, Nunavut. Ecography 28:331–344

    Article  Google Scholar 

  • Gilg O, Moe B, Hanssen SA, Schmidt NM, Sittler B, Hansen J, Reneerkens J, Sabard B, Chastel O, Moreau J, Phillips RA, Oudman T, Biersma EM, Fenstad AA, Lang J, Bollache L (2013) Trans-equatorial migration routes, staging sites and wintering areas of a high-Arctic avian predator: the long-tailed Skua (Stercorarius longicaudus). PLoS One 8

    Google Scholar 

  • Gill RE, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc B 276:447–458

    Article  PubMed  Google Scholar 

  • Gonzalez-Bergonzoni I, Johansen KL, Mosbech A, Landkildehus F, Jeppesen E, Davidson TA (2017) Small birds, big effects: the little auk (Alle alle) transforms high Arctic ecosystems. Proc R Soc B 284

    Google Scholar 

  • Grabowski MM, Doyle FI, Reid DG, Mossop D, Talarico D (2013) Do Arctic-nesting birds respond to earlier snowmelt? A multi-species study in north Yukon, Canada. Polar Biol 36:1097–1105

    Article  Google Scholar 

  • Green M, Alerstam T, Clausen P, Drent R, Ebbinge RS (2002) Dark-bellied Brent Geese Branta bernicla bernicla, as recorded by satellite telemetry, do not minimize flight distance during spring migration. Ibis 144:106–121

    Article  Google Scholar 

  • Guazzo RA, Schulman-Janiger A, Smith MH, Barlow J, D’Spain GL, Rimington DB, Hildebrand JA (2019) Gray whale migration patterns through the Southern California Bight from multi-year visual and acoustic monitoring. Mar Ecol Prog Ser 625:181–203

    Article  Google Scholar 

  • Gulseth OA, Nilssen KJ (2000) The brief period of spring migration, short marine residence, and high return rate of a northern Svalbard population of Arctic char. Trans Am Fish Soc 129:782–796

    Article  Google Scholar 

  • Gunn A, Russell D, Eamer J (2011) Northern caribou population trends in Canada. Canadian Councils of Resource Ministers Technical Thematic Report no 10

    Google Scholar 

  • Gurarie E, Hebblewhite M, Joly K, Kelly AP, Adamczewski J, Davidson SC, Davison T, Gunn A, Suitor MJ, Fagan WF, Boelman N (2019) Tactical departures and strategic arrivals: divergent effects of climate and weather on caribou spring migrations. Ecosphere 10

    Google Scholar 

  • Gutiérrez JS, Piersma T, Thieltges DW (2019) Micro- and macroparasite species richness in birds: the role of host life history and ecology. J Anim Ecol 88:1226–1239

    Article  PubMed  Google Scholar 

  • Gylfe A, Bergström S, Lunström J, Olsen B (2000) Reactivation of Borrelia infection in birds. Nature 403:724–725

    Article  CAS  PubMed  Google Scholar 

  • Hahn S, Bauer S, Dimitrov D, Emmenegger T, Ivanova K, Zehtindjiev P, Buttemer WA (2018) Low intensity blood parasite infections do not reduce the aerobic performance of migratory birds. Proc R Soc B 285

    Google Scholar 

  • Hall RJ, Altizer S, Bartel RA (2014) Greater migratory propensity in hosts lowers pathogen transmission and impacts. J Anim Ecol 83:1068–1077

    Article  PubMed  PubMed Central  Google Scholar 

  • Halliday WD, Insley SJ, Hilliard RC, de Jong T, Pine MK (2017) Potential impacts of shipping noise on marine mammals in the western Canadian Arctic. Mar Pollut Bull 123:73–82

    Article  CAS  PubMed  Google Scholar 

  • Hansen BB, Isaksen K, Benestad RE, Kohler J, Pedersen ÅØ, Loe LE, Coulson SJ, Larsen JO, Varpe Ø (2014) Warmer and wetter winters: characteristics and implications of an extreme weather event in the high Arctic. Environ Res Lett 9

    Google Scholar 

  • Hansson LA, Åkesson S (eds) (2014) Animal movement across scales. Oxford Univeristy Press

    Google Scholar 

  • Hauser DDW, Laidre KL, Stafford KM, Stern HL, Suydam RS, Richard PR (2017) Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation. Glob Change Biol 23:2206–2217

    Article  Google Scholar 

  • Hedenström A (2010) Extreme endurance migration: what is the limit to non-stop flight? PLoS Biol 8:e1000362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hendricks P (2003) Spring snow conditions, laying date, and clutch size in an alpine population of American Pipits. J Field Ornithol 74:423–429, 427

    Google Scholar 

  • Hessen DO, Tombre IM, van Geest G, Alfsnes K (2017) Global change and ecosystem connectivity: how geese link fields of Central Europe to eutrophication of Arctic freshwaters. Ambio 46:40–47

    Article  PubMed  Google Scholar 

  • Holmes RT (1966) Breeding ecology and annual cycle adaptations of the red-backed sandpiper (Calidris alpina) in northern Alaska. Condor 68:3–46

    Article  Google Scholar 

  • Holmes RT (1972) Ecological factors influencing the breeding season schedule of Western Sandpipers (Calidris mauri) in subarctic Alaska. Am Midl Nat 472–491

    Google Scholar 

  • Hromádková T, Pavel V, Flousek J, Briedis M (2020) Seasonally specific responses to wind patterns and ocean productivity facilitate the longest animal migration on earth. Mar Ecol Prog Ser 638:1–12

    Article  Google Scholar 

  • Hueffer K, Drown D, Romanovsky V, Hennessy T (2020) Factors contributing to anthrax outbreaks in the circumpolar north. EcoHealth 17:174–180

    Article  PubMed  Google Scholar 

  • IPBES (2019) Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem service. In: Brondizio ES, Settele J, Díaz S, Ngo (eds) IPBES secretariat. Bonn

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)

    Google Scholar 

  • Jackson JA, Steel DJ, Beerli P, Congdon BC, Olavarria C, Leslie MS, Pomilla C, Rosenbaum H, Baker CS (2014) Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae). Proc R Soc B 281

    Google Scholar 

  • Jefferies RL, Jano AP, Abraham KF (2006) A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. J Ecol 94:234–242

    Article  Google Scholar 

  • Ji R, Jin M, Varpe Ø (2013) Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob Change Biol 19:734–741

    Article  Google Scholar 

  • Jonker R, Kurvers RHJM, Bilt A, Faber M, Wieren SE, Prins HHT, Ydenberg RC (2012) Rapid adaptive adjustment of parental care coincident with altered migratory behaviour. Evol Ecol 26:657–667

    Article  Google Scholar 

  • Jönsson KI (1997) Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78:57–66

    Article  Google Scholar 

  • Jørgensen C, Dunlop ES, Opdal AF, Fiksen Ø (2008) The evolution of spawning migrations: state dependence and fishing-induced changes. Ecology 89:3436–3448

    Article  PubMed  Google Scholar 

  • Kaartvedt S, Titelman J (2018) Planktivorous fish in a future Arctic Ocean of changing ice and unchanged photoperiod. ICES J Mar Sci 75:2312–2318

    Article  Google Scholar 

  • Kelman I, Næss MW (2019) Climate change and migration for Scandinavian Saami: a review of possible impacts. Climate 7

    Google Scholar 

  • Klemetsen A, Amundsen PA, Dempson J, Jonsson B, Jonsson N, O’connell M, Mortensen E (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish 12:1–59

    Article  Google Scholar 

  • Kolpashikov L, Makhailov V, Russell DE (2015) The role of harvest, predators, and socio-political environment in the dynamics of the Taimyr wild reindeer herd with some lessons for North America. Ecol Soc 20

    Google Scholar 

  • Koprivnikar J, Leung TLF (2015) Flying with diverse passengers: greater richness of parasitic nematodes in migratory birds. Oikos 124:399–405

    Article  Google Scholar 

  • Kölzsch A, Bauer S, de Boer R, Griffin L, Cabot D, Exo KM, van der Jeugd HP, Nolet BA (2015) Forecasting spring from afar? Timing of migration and predictability of phenology along different migration routes of an avian herbivore. J Anim Ecol 84:272–283

    Article  PubMed  Google Scholar 

  • Krauss S, Stallknecht DE, Negovetich NJ, Niles LJ, Webby RJ, Webster RG (2010) Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological ‘hot spot’ for influenza viruses. Proc R Soc B 277:3373–3379

    Article  PubMed  PubMed Central  Google Scholar 

  • Krümmel EM, Macdonald RW, Kimpe LE, Gregory-Eaves I, Demers MJ, Smol JP, Finney B, Blais JM (2003) Delivery of pollutants by spawning salmon: fish dump toxic industrial compounds in Alaskan lakes on their return from the ocean. Nature 425:255–256

    Article  PubMed  CAS  Google Scholar 

  • Kuemmerle T, Baskin L, Leitao PJ, Prishchepov AV, Thonicke K, Radeloff VC (2014) Potential impacts of oil and gas development and climate change on migratory reindeer calving grounds across the Russian Arctic. Divers Distrib 20:416–429

    Article  Google Scholar 

  • Kvist A, Lindström Å (2003) Gluttony in migratory waders – unprecedented energy assimilation rates in vertebrates. Oikos 103:397–402

    Article  Google Scholar 

  • Lamarre J-F, Legagneux P, Gauthier G, Reed ET, Bêty J (2017) Predator-mediated negative effects of overabundant snow geese on arctic-nesting shorebirds. Ecosphere 8:e01788

    Article  Google Scholar 

  • Lambertucci SA, Shepard ELC, Wilson RP (2015) Human-wildlife conflicts in a crowded airspace. Science 348:502–504

    Article  CAS  PubMed  Google Scholar 

  • Lameris TK, van der Jeugd HP, Eichhorn G, Dokter AM, Bouten W, Boom MP, Litvin KE, Ens BJ, Nolet BA (2018) Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr Biol 28:2467–2473.e2464

    Google Scholar 

  • Langbehn TJ, Varpe Ø (2017) Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans. Glob Change Biol 23:5318–5330

    Article  Google Scholar 

  • Lank DB, Butler RW, Ireland J, Ydenberg RC (2003) Effects of predation danger on migration strategies of sandpipers. Oikos 103:303–319

    Article  Google Scholar 

  • Larsson K, Forslund P (1994) Population dynamics of the barnacle goose Branta leucopsis in the Baltic area: density-dependent effects on reproduction. J Anim Ecol 63:954–962

    Article  Google Scholar 

  • Larsson K, Forslund P, Gustafsson L, Ebbinge BS (1988) From the high Arctic to the Baltic - the successful establishment of a barnacle goose Branta leucopsis population on Gotland, Sweden. Ornis Scand 19:182–189

    Article  Google Scholar 

  • Le Corre M, Dussault C, Cote SD (2020) Where to spend the winter? The role of intraspecific competition and climate in determining the selection of wintering areas by migratory caribou. Oikos 129:512–525

    Article  Google Scholar 

  • Leblond M, St-Laurent MH, Cote SD (2016) Caribou, water, and ice: fine-scale movements of a migratory arctic ungulate in the context of climate change. Movement Ecol 4

    Google Scholar 

  • Lehikoinen A, Virkkala R (2016) North by north-west: climate change and directions of density shifts in birds. Glob Change Biol 22:1121–1129

    Article  Google Scholar 

  • Leung TLF, Koprivnikar J (2016) Nematode parasite diversity in birds: the role of host ecology, life history and migration. J Anim Ecol 85:1471–1480

    Article  PubMed  Google Scholar 

  • Loreau M, Mouquet N, Holt RD (2003) Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol Lett 6:673–679

    Article  Google Scholar 

  • Love OP, Gilchrist HG, Descamps S, Semeniuk CA, Bêty J (2010) Pre-laying climatic cues can time reproduction to optimally match offspring hatching and ice conditions in an Arctic marine bird. Oecologia 164:277–286

    Article  PubMed  Google Scholar 

  • MacKinnon J, Verkuil YI, Murray N (2012) IUCN situation analysis on east and southeast Asian intertidal habitats, with particular reference to the Yellow Sea (including the Bohai Sea). Occasional paper of the IUCN species survival commission 47

    Google Scholar 

  • Maclean IMD, Austin GE, Rehfisch MM, Blew J, Crowe O, Delany S, Devos K, Deceuninck B, Gunther K, Laursen K, Van Roomen M, Wahl J (2008) Climate change causes rapid changes in the distribution and site abundance of birds in winter. Glob Change Biol 14:2489–2500

    Article  Google Scholar 

  • Madsen J, Klaassen M (2006) Assessing body condition and energy budget components by scoring abdominal profiles in free-ranging pink-footed geese Anser brachyrhynchus. J Avian Biol 37:283–287

    Article  Google Scholar 

  • Madsen J, Cracknell G, Fox T (eds) (1999) Goose populations of the Western Palaearctic: a review of the status and distribution. Wetlands International Publication

    Google Scholar 

  • Madsen J, Williams JH, Johnson FA, Tombre IM, Dereliev S, Kuijken E (2017) Implementation of the first adaptive management plan for a European migratory waterbird population: the case of the Svalbard pink-footed goose Anser brachyrhynchus. Ambio 46:275–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathot KJ, Piersma T, Elner RW (2018) Shorebirds as integrators and indicators of mudflat ecology. In: Beninger PG (ed) Mudflat ecology. Springer International, Cham, pp 309–338

    Chapter  Google Scholar 

  • Mauritzen M, Derocher AE, Wiig O (2001) Space-use strategies of female polar bears in a dynamic sea ice habitat. Can J Zool 79:1704–1713

    Article  Google Scholar 

  • McElroy EJ, de Buron I (2014) Host performance as a target of manipulation by parasites: a meta-analysis. J Parasitol 100:399–410

    Article  PubMed  Google Scholar 

  • McKay AF, Hoye BJ (2016) Are migratory animals superspreaders of infection? Integr Comp Biol 56:260–267

    Article  Google Scholar 

  • McKinnon L, Smith PA, Nol E, Martin JL, Doyle FI, Abraham KF, Gilchrist HG, Morrison RIG, Bety J (2010) Lower predation risk for migratory birds at high latitudes. Science 327:326–327

    Article  CAS  PubMed  Google Scholar 

  • Meyer N, Bollache L, Galipaud M, Moreau J, Dechaume-Moncharmont F-X, Afonso E, Angerbjörn A, Bêty J, Brown G, Ehrich D, Gilg V, Giroux M-A, Hansen J, Lanctot R, Lang J, Latty C, Lecomte N, McKinnon L, Kennedy L, Reneerkens J, Saalfeld S, Sabard B, Schmidt NM, Sittler B, Smith P, Sokolov A, Sokolov V, Sokolova N, van Bemmelen R, Varpe Ø, Gilg O (2021) Behavioural responses of breeding arctic sandpipers to ground-surface temperature and primary productivity. Sci Total Environ 755:142485

    Article  CAS  PubMed  Google Scholar 

  • Milner-Gulland EJ, Fryxell JM, Sinclair ARE (eds) (2011) Animal migration: a synthesis. Oxford University Press, New York

    Google Scholar 

  • Mu T, Wilcove DS (2020) Upper tidal flats are disproportionately important for the conservation of migratory shorebirds. Proc R Soc B Biol Sci 287:20200278

    Article  Google Scholar 

  • Murray NJ, Clemens RS, Phinn SR, Possingham HP, Fuller RA (2014) Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front Ecol Environ 12:267–272

    Article  Google Scholar 

  • Mysterud A, Rauset GR, Van Moorter B, Andersen R, Strand O, Rivrud IM (2020) The last moves: the effect of hunting and culling on the risk of disease spread from a population of reindeer. J Appl Ecol 57:2509–2518

    Article  Google Scholar 

  • Næss MW (2012) Cooperative pastoral production: reconceptualizing the relationship between pastoral labor and production. Am Anthropol 114:309–321

    Article  Google Scholar 

  • Naiman RJ, Bilby RE, Schindler DE, Helfield JM (2002) Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5:399–417

    Article  Google Scholar 

  • Nicholson KL, Arthur SM, Horne JS, Garton EO, Del Vecchio PA (2016) Modeling Caribou movements: seasonal ranges and migration routes of the Central Arctic Herd. PLoS One 11

    Google Scholar 

  • Nilssen KJ, Gulseth OA, Iversen M, Kjol R (1997) Summer osmoregulatory capacity of the world’s northernmost living salmonid. Am J Phys Regul Integr Comp Phys 272:R743–R749

    CAS  Google Scholar 

  • O’Briain M, Reed A, Macdonald SD (1998) Breeding, moulting, and site fidelity of Brant (Branta bernicla) on Bathurst and Seymour Islands in the Canadian high Arctic. Arctic:350–360

    Google Scholar 

  • Ottersen G, Bogstad B, Yaragina NA, Stige LC, Vikebo FB, Dalpadado P (2014) A review of early life history dynamics of Barents Sea cod (Gadus morhua). ICES J Mar Sci 71:2064–2087

    Article  Google Scholar 

  • Piersma T (1987) Hop, skip or jump? Constraints on migration of arctic waders by feeding, fattening and flight speed. Limsoa Dutch Engl Summ 60:185–194

    Google Scholar 

  • Piersma T (1997) Do global patterns of habitat use and migration strategics co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos 80:623–631

    Article  Google Scholar 

  • Piersma T, Lok T, Chen Y, Hassell CJ, Yang HY, Boyle A, Slaymaker M, Chan YC, Melville DS, Zhang ZW, Ma ZJ (2016) Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J Appl Ecol 53:479–490

    Article  Google Scholar 

  • Poole KG, Gunn A, Patterson BR, Dumond M (2010) Sea ice and migration of the dolphin and union caribou herd in the Canadian Arctic: an uncertain future. Arctic 414–428

    Google Scholar 

  • Prop J, de Vries J (1993) Impact of snow and food conditions on the reproductive performance of barnacle geese Branta leucopsis. Ornis Scand 24:110–121

    Article  Google Scholar 

  • Rice DW, Wolman AA (1971) The life history and ecology of the gray whale (Eschrichtius robustus). The American Society of Mammalogists

    Google Scholar 

  • Righton D, Westerberg H, Feunteun E, Økland F, Gargan P, Amilhat E, Metcalfe J, Lobon-Cervia J, Sjöberg N, Simon J, Acou A, Vedor M, Walker A, Trancart T, Brämick U, Aarestrup K (2016) Empirical observations of the spawning migration of European eels: the long and dangerous road to the Sargasso Sea. Sci Adv 2

    Google Scholar 

  • Robar N, Murray DL, Burness G (2011) Effects of parasites on host energy expenditure: the resting metabolic rate stalemate. Can J Zool 89:1146–1155

    Article  Google Scholar 

  • Runge CA, Martini TG, Possingham HP, Willis SG, Fuller RA (2014) Conserving mobile species. Front Ecol Environ 12:395–402

    Article  Google Scholar 

  • Samplonius JM, Atkinson A, Hassall C, Keogan K, Thackeray SJ, Assmann JJ, Burgess MD, Johansson J, Macphie KH, Pearce-Higgins JW, Simmonds EG, Varpe Ø, Weir JC, Childs DZ, Cole EF, Daunt F, Hart T, Lewis OT, Pettorelli N, Sheldon BC, Phillimore AB (2021) Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat Ecol Evol 5:155–164

    Article  PubMed  Google Scholar 

  • Satterfield DA, Maerz JC, Altizer S (2015) Loss of migratory behaviour increases infection risk for a butterfly host. Proc R Soc B Biol Sci 282:20141734

    Article  Google Scholar 

  • Schekkerman H, Tulp I, Piersma T, Visser GH (2003) Mechanisms promoting higher growth rate in arctic than in temperate shorebirds. Oecologia 134:332–342

    Article  PubMed  Google Scholar 

  • Schmidt NM, Reneerkens J, Christensen JH, Olesen M, Roslin T (2019) An ecosystem-wide reproductive failure with more snow in the Arctic. PLoS Biol 17

    Google Scholar 

  • Shaw AK, Binning SA (2016) Migratory recovery from infection as a selective pressure for the evolution of migration. Am Nat 187:491–501

    Article  PubMed  Google Scholar 

  • Skagseth Ø, Slotte A, Stenevik EK, Nash RDM (2015) Characteristics of the Norwegian coastal current during years with high recruitment of Norwegian spring spawning herring (Clupea harengus L.). PLoS One 10:e0144117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith PA, McKinnon L, Meltofte H, Lanctot RB, Fox AD, Leafloor JO, Soloviev M, Franke A, Falk K, Golovatin M, Sokolov V, Sokolov A, Smith AC (2020) Status and trends of tundra birds across the circumpolar Arctic. Ambio 49:732–748

    Article  PubMed  PubMed Central  Google Scholar 

  • Stafford KM (2019) Increasing detections of killer whales (Orcinus orca), in the Pacific Arctic. Mar Mamm Sci 35:696–706

    Article  Google Scholar 

  • Stephens PA, Boyd IL, McNamara JM, Houston AI (2009) Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90:2057–2067

    Article  PubMed  Google Scholar 

  • Stevick PT, Berrow SD, Berube M, Bouveret L, Broms F, Jann B, Kennedy A, Suarez PL, Meunier M, Ryan C, Wenzel F (2016) There and back again: multiple and return exchange of humpback whales between breeding habitats separated by an ocean basin. J Mar Biol Assoc UK 96:885–890

    Article  Google Scholar 

  • Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Chang 110:1005–1027

    Article  Google Scholar 

  • Studds CE, Kendall BE, Murray NJ, Wilson HB, Rogers DI, Clemens RS, Gosbell K, Hassell CJ, Jessop R, Melville DS, Milton DA, Minton CDT, Possingham HP, Riegen AC, Straw P, Woehler EJ, Fuller RA (2017) Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat Commun 8:14895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers RW, Nicoll M, Peach W (2001) Numbers, migration phenology and survival of purple sandpipers Calidris maritima at Gourdon, eastern Scotland. Bird Study 48:139–146

    Article  Google Scholar 

  • Sun NW, Goodwin SE, Griego MS, Gerson AR, Clotfelter ED (2020) Does blood loss explain higher resting metabolic rates in nestling birds with hematophagous ectoparasites? J Avian Biol 51

    Google Scholar 

  • Sutherland WJ (1998) Evidence for flexibility and constraint in migration systems. J Avian Biol 29:441–446

    Article  Google Scholar 

  • Svenning MA, Klemetsen A, Olsen T (2007) Habitat and food choice of Arctic charr in Linnevatn on Spitsbergen, Svalbard: the first year-round investigation in a high Arctic lake. Ecol Freshw Fish 16:70–77

    Article  Google Scholar 

  • Swartz SL, Taylor BL, Rugh DJ (2006) Gray whale Eschrichtius robustus population and stock identity. Mammal Rev 36:66–84

    Article  Google Scholar 

  • Taillon J, Festa-Bianchet M, Cote SD (2012) Shifting targets in the tundra: protection of migratory caribou calving grounds must account for spatial changes over time. Biol Conserv 147:163–173

    Article  Google Scholar 

  • Taylor AR, Lanctot RB, Powell AN, Huettmann F, Nigro DA, Kendall SJ (2010) Distribution and community characteristics of staging shorebirds on the northern coast of Alaska. Arctic 63:451–467

    Article  Google Scholar 

  • Taylor CM, Laughlin AJ, Hall RJ (2016) The response of migratory populations to phenological change: a migratory flow network modelling approach. J Anim Ecol 85:648–659

    Article  PubMed  Google Scholar 

  • Teitelbaum CS, Huang S, Hall RJ, Altizer S (2018) Migratory behaviour predicts greater parasite diversity in ungulates. Proc R Soc B Biol Sci 285:20180089

    Article  Google Scholar 

  • Tombre IM, Høgda KA, Madsen J, Griffin LR, Kuijken E, Shimmings P, Rees E, Verscheure C (2008) The onset of spring and timing of migration in two arctic nesting goose populations: the pink-footed goose Anser bachyrhynchus and the barnacle goose Branta leucopsis. J Avian Biol 39:691–703

    Article  Google Scholar 

  • Tombre IM, Oudman T, Shimmings P, Griffin L, Prop J (2019) Northward range expansion in spring-staging barnacle geese is a response to climate change and population growth, mediated by individual experience. Glob Change Biol 25:3680–3693

    Article  Google Scholar 

  • Tyler NJC, Øritsland NA (1989) Why don’t Svalbard reindeer migrate? Holarct Ecol 12:369–376

    Google Scholar 

  • Van Der Jeugd HP, Eichhorn G, Litvin KE, Stahl J, Larsson K, Van Der Graaf AJ, Drent RH (2009) Keeping up with early springs: rapid range expansion in an avian herbivore incurs a mismatch between reproductive timing and food supply. Glob Change Biol 15:1057–1071

    Article  Google Scholar 

  • van der Wal R, Sjogersten S, Woodin SJ, Cooper EJ, Jonsdottir IS, Kuijper D, Fox TAD, Huiskes AD (2007) Spring feeding by pink-footed geese reduces carbon stocks and sink strength in tundra ecosystems. Glob Change Biol 13:539–545

    Article  Google Scholar 

  • van Gils JA, Munster VJ, Radersma R, Liefhebber D, Fouchier RAM, Klaassen M (2007) Hampered foraging and migratory performance in swans infected with low-pathogenic avian influenza a virus. PLoS One 2

    Google Scholar 

  • van Gils JA, Lisovski S, Lok T, Meissner W, Ozarowska A, de Fouw J, Rakhimberdiev E, Soloviev MY, Piersma T, Klaassen M (2016) Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 352:819–821

    Article  PubMed  CAS  Google Scholar 

  • Varpe Ø (2010) Stealing bivalves from common eiders: kleptoparasitism by glaucous gulls in spring. Polar Biol 33:359–365

    Article  Google Scholar 

  • Varpe Ø (2012) Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles. J Plankton Res 34:267–276

    Article  Google Scholar 

  • Varpe Ø (2017) Life history adaptations to seasonality. Integr Comp Biol 57:943–960

    Article  PubMed  Google Scholar 

  • Varpe Ø, Fiksen Ø (2010) Seasonal plankton-fish interactions: light regime, prey phenology, and herring foraging. Ecology 91:311–318

    Article  PubMed  Google Scholar 

  • Varpe Ø, Fiksen Ø, Slotte A (2005) Meta-ecosystems and biological energy transport from ocean to coast: the ecological importance of herring migration. Oecologia 146:443–451

    Article  PubMed  Google Scholar 

  • Varpe Ø, Jørgensen C, Tarling GA, Fiksen Ø (2009) The adaptive value of energy storage and capital breeding in seasonal environments. Oikos 118:363–370

    Article  Google Scholar 

  • Varpe Ø, Daase M, Kristiansen T (2015) A fish-eye view on the new Arctic lightscape. ICES J Mar Sci 72:2532–2538

    Article  Google Scholar 

  • Viana DS, Santamaria L, Figuerola J (2016) Migratory birds as global dispersal vectors. Trends Ecol Evol 31:763–775

    Article  PubMed  Google Scholar 

  • Vincent WF, Callaghan TV, Dahl-Jensen D, Johansson M, Kovacs KM, Michel C, Prowse T, Reist JD, Sharp M (2011) Ecological implications of changes in the Arctic cryosphere. Ambio 40:87–99

    Article  Google Scholar 

  • Wassmann P, Duarte CM, Agusti S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Change Biol 17:1235–1249

    Article  Google Scholar 

  • Wauchope HS, Shaw JD, Varpe Ø, Lappo EG, Boertmann D, Lanctot RB, Fuller RA (2017) Rapid climate-driven loss of breeding habitat for Arctic migratory birds. Glob Change Biol 23:1085–1094

    Article  Google Scholar 

  • Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83

    Article  Google Scholar 

  • Weladji RB, Holand O (2006) Influences of large-scale climatic variability on reindeer population dynamics: implications for reindeer husbandry in Norway. Clim Res 32:119–127

    Article  Google Scholar 

  • Westerdahl H, Bensch S, Nilsson JÅ, O’Connor E, Sehgal R, Tesson S, Hasselquist D (2014) Pathogens and hosts on the move. In: Hansson LA, Åkesson S (eds) Animal movement across scales, pp 126–148

    Google Scholar 

  • Wilcove DS, Wikelski M (2008) Going, going, gone: is animal migration disappearing. PLoS Biol 6:e188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willemoes M, Strandberg R, Klaassen RHG, Tottrup AP, Vardanis Y, Howey PW, Thorup K, Wikelski M, Alerstam T (2014) Narrow-front loop migration in a population of the common cuckoo Cuculus canorus, as revealed by satellite telemetry. PLoS One 9

    Google Scholar 

  • Willson MF, Womble JN (2006) Vertebrate exploitation of pulsed marine prey: a review and the example of spawning herring. Rev Fish Biol Fish 16:183–200

    Article  Google Scholar 

  • Xu Y, Si Y, Wang Y, Zhang Y, Prins HHT, Cao L, de Boer WF (2019) Loss of functional connectivity in migration networks induces population decline in migratory birds. Ecol Appl 29:e01960

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng HQ, Jia GS, Epstein H (2011) Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ Res Lett 6

    Google Scholar 

Download references

Acknowledgment

We thank all the photographers who captured the animals that made it to Fig. 1. The caribou (Victor Adam), humpback whale (shadowfaxone), bar-tailed godwit (psubraty), red knot (PublicDomainImages), and the snow geese (Astrid Zellmann) are from pixabay; https://pixabay.com/photos, with the name of the photographer or profile name on pixabay in parenthesis. Arctic tern is photographed by Martins Briedis and the herring by Leif Nøttestad/Havforskningsinstituttet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øystein Varpe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varpe, Ø., Bauer, S. (2022). Seasonal Animal Migrations and the Arctic: Ecology, Diversity, and Spread of Infectious Agents. In: Tryland, M. (eds) Arctic One Health. Springer, Cham. https://doi.org/10.1007/978-3-030-87853-5_3

Download citation

Publish with us

Policies and ethics