Skip to main content

Optical Fibers for Space-Division Multiplexing

  • Chapter
  • First Online:
Space-Division Multiplexing in Optical Communication Systems

Abstract

This chapter describes the design, the transmission characteristics, and the measurements technology of multi-core fibers (MCFs), few-mode fibers (FMFs), and few-mode multi-core fibers (FM-MCFs). Moreover, the cabling technology and future perspectives of innovative optical fiber cable technologies are presented.

Masaharu Ohashi and Shoichiro Matsuo are chapter editors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii, T. Hasegawa, Lowest-Ever 0.1419-dB/km Loss Optical Fiber, in OFC 2017, Th5D.1 (2017)

    Google Scholar 

  2. K. Tajima, Low loss PCF by reduction of hole surface imperfection, in ECOC2007, PD2.1 (2007)

    Google Scholar 

  3. P.J. Roberts, F. Couny, H. Sabert, B.J. Mangan, D.P. Williams, L. Farr, M.W. Mason, A. Tomlinson, Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13(1), 236–244 (2005). https://doi.org/10.1364/OPEX.13.000236

    Article  ADS  Google Scholar 

  4. Y. Chen, Z. Liu, S.R. Sandoghchi, G. Jasion, T.D. Bradley, E. Numkam, J.R. Hayes, N.V. Wheeler, D.R. Gray, B.J. Mangan, R. Slavik, F. Poletti, M.N. Petrovich, D.J. Richardson, Demonstration of an 11km Hollow core photonic bandgap fiber for broadband low-latency data transmission, in OFC2015, Th5A.1 (2015)

    Google Scholar 

  5. T.D. Bradley, J.R. Hayes, Y. Chen, G.T. Jasion, S.R. Sandoghchi, R. Slavik, E.N. Fokoua, S. Bawn, H. Sakr, I.A. Davidson, A. Taranta, J.P. Thomas, M.N. Petrovich, D.J. Richardson, F. Poletti, Record low-loss 1.3dB/km data transmitting antiresonant hollow core fibre, in ECOC2018, PDP Th3F.2 (2018)

    Google Scholar 

  6. M. Hirano, T. Haruna, Y. Tamura, T. Kawano, S. Ohnuki, Y. Yamamoto, Y. Koyano, T. Sasaki, Record low loss, record high fom optical fiber with manufacturable process, in OFC/NFOEC 2013, PDP5A.7 (2013)

    Google Scholar 

  7. Y. Kawaguchi, Y. Tamura, T. Haruna, Y. Yamamoto, M. Hirano, Ultra low-loss pure silica core fiber. SEI Techn. Rev. 80, 51–55 (2015)

    Google Scholar 

  8. T. Kato, M. Hirano, M. Onishi, M. Nishimura, Ultra-low nonlinearity low-loss pure silica core fibre for long-haul WDM transmission. Electron. Lett. 35(19), 1615–1617 (1999). https://doi.org/10.1049/el:19991094

  9. V. Carri, A. Carena, G. Bosco, P. Poggiolini, M. Hirano, Y. Yamamoto, F. Forghieri, Fiber figure of merit based on maximum reach. in OFC/NFOEC2013, OTh3G.2 (2013)

    Google Scholar 

  10. M. Hirano, Y. Yamamoto, V.A.J.M. Sleiffer, T. Sasaki, Analytical OSNR formulation validated with 100G-WDM experiments and optimal subsea fiber proposal, in OFC/NFOEC2013, OTu2B.6 (2013)

    Google Scholar 

  11. Y. Yamamoto, M. Hirano, V.A.J.M. Sleiffer, T. Sasaki, Analytical OSNR formulation and proposal of optimal fiber for submarine systems. IEICE Techn. Rep. (in Japanese) 113(156), 23–28 (2013)

    Google Scholar 

  12. P. Poggiolini, The GN model of non-linear propagation in uncompensated coherent optical systems. J. Lightwave Technol. 30(24), 3857–3879 (2012). https://doi.org/10.1109/JLT.2012.2217729

  13. M. Hirano, Y. Yamamoto, T. Yoshiaki, T. Haruna, T. Sasaki, Aeff-enlarged pure-silica-core fiber having ring core profile, in OFC/NFOEC2012, OTh4I.2 (2012)

    Google Scholar 

  14. D. Marcuse, Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56(5), 703–718 (1977). https://doi.org/10.1002/j.1538-7305.1977.tb00534.x

    Article  ADS  Google Scholar 

  15. V.A.J.M. Sleiffer, D.V. den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. Jansen, H.D. Waardt, A comparison between SSMF and large-Aeff Pure-Silica core fiber for ultra long-haul 100G transmission. Opt. Express 19(26), B710–B715 (2011). https://doi.org/10.1364/OE.19.00B710

    Article  Google Scholar 

  16. S. Ohnuki, K. Kuwahara, K. Morita, Y. Koyano, Further attenuation improvement of a pure silica core fiber with large effective area, in SubOptic2010, THU3A03 (2010)

    Google Scholar 

  17. S. Bickham, Ultimate limits of effective area and attenuation for high data rate fibers. in OFC/NFOEC2011, OWA5 (2011)

    Google Scholar 

  18. K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, Y. Chigusa, Ultra-low-loss (0.1484dB/km) pure silica core fiber and extension of transmission distance. Electon. Lett. 38(20), 1168–1169 (2002). https://doi.org/10.1049/el:20020824

  19. Y. Koyano, S. Ohnuki, T. Kawano, M. Hirano, T. Haruna, Y. Yamamoto, Further improvement of linearity-enhanced optical fiber with low attenuation and large effective core area, in SubOptic2013, EC11, Paris, France (2013)

    Google Scholar 

  20. J.F. Libert, J.L. Lang, J. Chesnoy, The new 160 Gigabit WDM challenge for submarine cable systems, in IWCS1998, 375–384 (1998)

    Google Scholar 

  21. J.M. Fini, B. Zhu, T.F. Taunay, M.F. Yan, Statistics of crosstalk in bent multicore fibers. Opt. Express 18(14), 15122–15129 (2010). https://doi.org/10.1364/OE.18.015122

    Article  ADS  Google Scholar 

  22. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, E. Sasaoka, Crosstalk variation of multi-core fibre due to fibre bend, in European Conference on Optical Communications (ECOC), We.8.F.6. (2010)

    Google Scholar 

  23. M. Koshiba, K. Saitoh, K. Takenaga, S. Matsuo, Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory. Opt. Express 19(26), B102–B111 (2011). https://doi.org/10.1364/OE.19.00B102

    Article  Google Scholar 

  24. K. Petermann, Microbending loss in monomode fibers. Electron. Lett. 12(4), 107–109 (1976). https://doi.org/10.1049/el:19760084

  25. M. Koshiba, K. Saitoh, K. Takenaga, S. Matsuo, Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers. IEEE Photonics J. 4(5), 1987–1995 (2012).https://doi.org/10.1109/JPHOT.2012.2221085

  26. T. Hayashi, T. Sasaki, E. Sasaoka, K. Saitoh, M. Koshiba, Physical interpretation of intercore crosstalk in multicore fiber: effects of macrobend, structure fluctuation, and microbend. Opt. Express 21(5), 5401–5412 (2013). https://doi.org/10.1364/OE.21.005401

    Article  ADS  Google Scholar 

  27. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, M. Koshiba, Crosstalk behavior of cores in multi-core fiber under bent condition. IEICE Electron. Express 8(6), 385–390 (2011). https://doi.org/10.1587/elex.8.385

    Article  Google Scholar 

  28. T. Hayashi, T. Sasaki, E. Sasaoka, Multi-core fibers and their crosstalk characteristics, in IEEE Photonics Society Summer Topical Meeting Series, Seattle, TuC4.1 (2012)

    Google Scholar 

  29. K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, M. Koshiba, Reduction of crosstalk by quasi-homogeneous solid multi-core fiber, in Optical Fiber Communication Conference (OFC) 2010, OWK7 (2010)

    Google Scholar 

  30. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, M. Koshiba, An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction. IEICE Trans. Commun. E94.B(2), 409–416 (2011). https://doi.org/10.1587/transcom.E94.B.409

  31. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, M. Koshiba, Reduction of crosstalk by trench-assisted multi-core fiber, in Optical Fiber Communication Conference (OFC) 2011, OWJ4 (2011)

    Google Scholar 

  32. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Opt. Express 19(17), 16576–16592 (2011). https://doi.org/10.1364/OE.19.016576

    Article  ADS  Google Scholar 

  33. K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, S. Tomita, Multi-core hole-assisted fibers for high core density space division multiplexing, in Optoelectronics and Communications Conference (OECC) 2010, Sapporo, Japan, 7C2-1 (2010)

    Google Scholar 

  34. C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. May-Arriojo, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, G. Li, Hole-assisted few-mode multicore fiber for high-density space-division multiplexing. IEEE Photonics Technol. Lett. 24(21), 1914–1917 (2012). https://doi.org/10.1109/LPT.2012.2218801

  35. A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, T. Nasilowski, Hole-assisted multicore optical fiber for next generation telecom transmission systems. Appl. Phys. Lett. 105(8), 081106 (2014). https://doi.org/10.1063/1.4894178

    Article  ADS  Google Scholar 

  36. K. Imamura, K. Mukasa, R. Sugizaki, Y. Mimura, T. Yagi, Multi-core holey fibers for ultra large capacity wide-band transmission, in European Conference on Optical Communication (ECOC) 2008, P.1.17 (2008)

    Google Scholar 

  37. D.M. Taylor, C.R. Bennett, T.J. Shepherd, L.F. Michaille, M.D. Nielsen, H.R. Simonsen, Demonstration of multi-core photonic crystal fibre in an optical interconnect. Electron. Lett. 42(6), 331–332 (2006). https://doi.org/10.1049/el:20064382

    Article  ADS  Google Scholar 

  38. M. Koshiba, K. Saitoh, Y. Kokubun, Heterogeneous multi-core fibers: proposal and design principle. IEICE Electron. Express 6(2), 98–103 (2009). https://doi.org/10.1587/elex.6.98

  39. G. Le Noane, D. Boscher, P. Grosso, J.C. Bizeul, C. Botton, Ultra high density cables using a new concept of bunched multicore monomode fibers: a key for the future FTTH networks, in International Wire and Cable Symposium (IWCS) (1994), pp. 203–210

    Google Scholar 

  40. T. Hayashi, T. Sasaki, E. Sasaoka, Behavior of inter-core crosstalk as a noise and its effect on Q-factor in multi-core fiber. IEICE Trans. Commun. E97.B(5), 936–944 (2014). https://doi.org/10.1587/transcom.E97.B.936

  41. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Characterization of crosstalk in ultra-low-crosstalk multi-core fiber. J. Light. Technol. 30(4), 583–589 (2012). https://doi.org/10.1109/JLT.2011.2177810

  42. T. Hayashi, Multi-core optical fibers, in Optical Fiber Telecommunications, 6th edn., vol. A, ed. by I. P. Kaminow, T. Li, A.E. Willner (Elsevier, 2013), pp. 321–352

    Google Scholar 

  43. K. Saitoh, M. Koshiba, K. Takenaga, S. Matsuo, Crosstalk and core density in uncoupled multi-core fibers. IEEE Photon. Technol. Lett. 24(21), 1898–1901 (2012). https://doi.org/10.1109/LPT.2012.2217489

  44. S.O. Arik, J.M. Kahn, K.-P. Ho, MIMO signal processing for mode-division multiplexing. IEEE Signal Process. Mag. 31(2), 25–34 (2014). https://doi.org/10.1109/MSP.2013.2290804

  45. K.-P. Ho, J.M. Kahn, Statistics of group delays in multimode fiber with strong mode coupling. J. Lightw. Technol. 29(21), 3119–3128 (2011). https://doi.org/10.1109/JLT.2011.2165316

  46. R. Ryf, R.-J. Essiambre, A.H. Gnauck, S. Randel, M.A. Mestre, C. Schmidt, P.J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, T. Sasaki, Space-division multiplexed transmission over 4200-km 3-core microstructured fiber, in The Optical Fiber Communication Conference, Los Angeles, CA, USA, PDP5C.2 (2012)

    Google Scholar 

  47. R. Ryf, N.K. Fontaine, B. Guan, R.-J. Essiambre, S. Randel, A.H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, B. Ercan, R.P. Scott, S.J. Ben Yoo, T. Hayashi, T. Nagashima, T. Sasaki, 1705-km transmission over coupled-core fibre supporting 6 spatial modes, in The European Conference on Optical Communication, Cannes, France, PD.3.2 (2014)

    Google Scholar 

  48. C. Xia, N. Bai, I. Ozdur, X. Zhou, G. Li, Supermodes for optical transmission. Opt. Express 19(17), 16653–16664 (2011). https://doi.org/10.1364/OE.19.016653

    Article  ADS  Google Scholar 

  49. K. Saitoh, S. Matsuo, Multicore fiber technology. IEEE J. Lightw. Technol. 1, 55–66 (2016). https://doi.org/10.1109/JLT.2015.2466444

  50. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Ultra-low-crosstalk multi-core fiber feasible to ultra-long-haul transmission, In The Optical Fiber Communication Conference, PDPC2 (2011)

    Google Scholar 

  51. K. Imamura, K. Mukasa, R. Sugizaki, Trench assisted multi-core fiber with large Aeff over 100 μm2 and low attenuation loss, in The European Conference on Optical Communication, Geneva, Switzerland, Mo.1.LeCervin.1 (2011)

    Google Scholar 

  52. B. Yao, K. Ohsono, N. Shiina, K. Fukuzato, A. Hongo, E. H. Sekiya, K. Saito, Reduction of crosstalk by hole-walled multi-core fibers, in The Optical Fiber Communication Conference, Los Angeles, CA, USA, OM2D.5 (2012)

    Google Scholar 

  53. T. Sakamoto, K. Saitoh, N. Hanzawa, K. Tsujikawa, L. Ma, M. Koshiba, F. Yamamoto, Crosstalk suppressed hole-assisted 6-core fiber with cladding diameter of 125 μm, in The European Conference on Optical Communication, London, U.K., Mo.3.A.3 (2013)

    Google Scholar 

  54. F. Ye, J. Tu, K. Saitoh, T. Morioka, A simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers. Opt. Express 22(19), 23007–23018 (2014). https://doi.org/10.1364/OE.22.023007

    Article  ADS  Google Scholar 

  55. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, Investigation of crosstalk dependencies on bending radius of heterogeneous multicore fiber, in The Optical Fiber Communication Conference, Anaheim, CA, USA, OTh3K.3 (2013)

    Google Scholar 

  56. Y. Amma, Y. Sasaki, K. Takenaga, S. Matsuo, J. Tu, K. Saitoh M. Koshiba, T. Morioka, Y. Miyamoto, High-density multicore fiber with heterogeneous core arrangement, in The Optical Fiber Communication Conference, Los Angeles, CA, USA, Th4C.4 (2015)

    Google Scholar 

  57. Y. Sasaki, K. Takenaga, K. Aikawa, Y. Miyamoto, T. Morioka, Single-mode 37-core fiber with a cladding diameter of 248 μm, in The Optical Fiber Communication Conference, Th1H2 (2017)

    Google Scholar 

  58. H. Ono, Y. Abe, K. Shikama, T. Takahashi, M. Yamada, K. Takenaga, S. Matsuo, Amplification method for crosstalk reduction in multi-core fibre amplifier. Electron. Lett. 49(2), 138–140 (2013). https://doi.org/10.1049/el.2012.4307

  59. A. Sano, H. Takara, T. Kobayashi, Y. Miyamoto, Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving. IEEE J. Lightw. Technol. 30(16), 2771–2779 (2014). https://doi.org/10.1109/JLT.2014.2320826

  60. M.O. Van Deventer, Polarization properties of Rayleigh backscattering in single-mode fibers. IEEE J. Lightw. Technol. 11(12), 1895–1899 (1993). https://doi.org/10.1109/50.257947

  61. P.J. Winzer, A.H. Gnauck, A. Konczykowska, F. Jorge, J.-Y. Dupuy, Penalties from in-band crosstalk for advanced optical modulation formats, in The European Conference on Optical Communication, Geneva, Switzerland, Tu.5.B.7 (2011)

    Google Scholar 

  62. S. Matsuo, K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, K. Saitoh, M. Koshiba, Large-effective-area ten-core fiber with cladding diameter of about 200 μm. Opt. Lett. 36(23), 4626–4628 (2011). https://doi.org/10.1364/OL.36.004626

    Article  ADS  Google Scholar 

  63. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, M. Koshiba, A large effective area multi-core fiber with an optimized cladding thickness. Opt. Express 19(26), B542–B550 (2011). https://doi.org/10.1364/OE.19.00B543

    Article  Google Scholar 

  64. B. Zhu, T.F. Taunay, M. Fishteyn, X. Liu, S. Chandraskekhar, M.F. Yan, J.M. Fini, E.M. Monberg, F.V. Dimarcello, 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. Opt. Express 19(17), 16665–16671 (2011). https://doi.org/10.1364/OE.19.016665

  65. H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, Y. Miyamoto, 1000-km 7-core fiber transmission of 10x 96-Gb/s PDM-16QAM using Raman amplification with 6.5W per fiber. Opt. Exp. 20(9), 10100–10105 (2012). https://doi.org/10.1364/OE.20.010100

  66. S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, M. Kosihba, 12-core fiber with one ring structure for extremely large capacity Transmission. Opt. Express 20(27), 28398–28408 (2012). https://doi.org/10.1364/OE.20.028398

    Article  ADS  Google Scholar 

  67. H. Takahashi, T. Tsuritani, E.L.T. de Gabory, T. Ito, W.R. Peng, K. Igarashi, K. Takeshima, Y. Kawaguchi, I. Morita, Y. Tsuchida, Y. Mimura, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, M. Suzuki, First demonstration of MC-EDFA-repeatered SDM transmission of 40 x 128-Gbit/s PDM-QPSK signals per core over 6,160-km 7-core MCF, in The European Conference on Optical Communication, paper Th.3.C.3 (Amsterdam, Netherlands, 2012)

    Google Scholar 

  68. J. Sakaguchi, B.J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, M. Watanabe, 305-Tb/s space division multiplexed transmission using homogeneous 19-core fiber. IEEE J. Lightw. Technol. 31(4), 554–562 (2013). https://doi.org/10.1109/JLT.2012.2217373

    Article  ADS  Google Scholar 

  69. A. Sano, H. Takara, T. Kobayashi, H. Kawakami, H. Kisikawa, T. Nakagawa, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, M. Nagatani, T. Moro, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, M. Yamada, H. Masuda, T. Morioka, 409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving. Opt. Express 21(14), 16777–16783 (2013). https://doi.org/10.1364/OE.21.016777

    Article  ADS  Google Scholar 

  70. J. Sakaguchi, W. Klaus, B.J. Puttnam, J.M.D. Mendinueta, Y. Awaji, N. Wada, Y. Tsuchida, K. Maeda, M. Tadakuma, K. Imamura, R. Sugizaki, T. Kobayashi, Y. Tottori, M. Watanabe, R.V. Jensen, 19-core MCF transmission system using EDFA with shared core pumping coupled via free-space optics. Opt. Express 22(1), 90–95 (2013). https://doi.org/10.1364/OE.22.000090

    Article  ADS  Google Scholar 

  71. T. Hayashi, T. Nakanishi, K. Hirashima, O. Shimakawa, F. Sato, K. Koyama, A. Furuya, Y. Murakami, and T. Sasaki, 125-μm-cladding 8-core multi-core fiber realizing ultra-high-density cable suitable for O-band short-reach optical interconnects, in The Optical Fiber Communication Conference, Los Angeles, CA, USA, Th5C.6 (2015)

    Google Scholar 

  72. Y. Sasaki, R. Fukumoto, K. Takenaga, K. Aikawa, K. Saitoh, T. Morioka, Y. Miyamoto, Crosstalk-managed heterogeneous single-mode 32-core fibre, in The European Conference on Optical Communication , W.2.B.2 (2016)

    Google Scholar 

  73. B. Zhu, J.M. Fini, M.F. Yan, X. Liu, S. Chandrasekhar, T.F. Taunay, M. Fishteyn, E.M. Monberg, F.V. Dimarcello, High-capacity space-division-multiplexed DWDM transmissions using multicore fiber. IEEE J. Lightw. Technol. 30(4), 486–492 (2012). https://doi.org/10.1109/JLT.2011.2173793

    Article  ADS  Google Scholar 

  74. J. Sakaguchi, Y. Awaji, N. Wada, Fundamental study on new characterization method for crosstalk property on multi-core fibers using long wavelength probe signals, in The Optical Fiber Communication Conference, Anaheim, CA, USA, OW1K.1 (2013)

    Google Scholar 

  75. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Uncoupled multi-core fiber enhancing signal-to-noise ratio. Opt. Express 20(26), B94–B103 (2012)

    Article  Google Scholar 

  76. A. Carena, V. Curri, G. Bosco, R. Cigliutti, E. Torrengo, P. Poggiolini, A. Nespola, D. Zeolla, F. Forghieri, Novel figure of merit to compare fibers in coherent detection systems with uncompensated links. Opt. Express 20(1), 339–346 (2012). https://doi.org/10.1364/OE.20.000339

    Article  ADS  Google Scholar 

  77. T. Hayashi, T. Sasaki, Design strategy of uncoupled multicore fiber enabling high spatial capacity transmission, in IEEE Photonics Society Summer Topical Meeting Series, Waikoloa, HI, MC2.4 (2013)

    Google Scholar 

  78. R.L. Graham, B.D. Lubachevsky, K.J. Nurmela, P.R. J. Österg\aard, Dense packings of congruent circles in a circle. Discrete Math. 181(1), 139–154 (1998). https://doi.org/10.1016/S0012-365X(97)00050-2

  79. E. Specht, Circles in a circle. www.packomania.com, 21-May-2012. [Online]. Available: http://www.packomania.com/. [Accessed: 20-Apr-2013]

  80. J.H. Chang, H.G. Choi, Y.C. Chung, Achievable capacity improvement by using multi-level modulation format in trench-assisted multi-core fiber system. Opt. Express 21(12), 14262–14271 (2013). https://doi.org/10.1364/OE.21.014262

  81. Y. Kokubun, T. Watanabe, Dense heterogeneous uncoupled multi-core fiber using 9 types of cores with double cladding structure, in Microopics Conference (MOC), 17th, Sendai, Japan, K-5 (2011)

    Google Scholar 

  82. F. Ye, C. Peucheret, T. Morioka, Capacity of space-division multiplexing with heterogeneous multi-core fibers, in OptoElectronics and Communication Conference/Photonics in Switching (OECC/PS), Kyoto, WR2-3 (2013)

    Google Scholar 

  83. T. Watanabe, Y. Kokubun, High density and low cross talk design of heterogeneous multi-core fiber with air hole assisted double cladding, in OptoElectronics and Communication Conference/Photonics in Switching (OECC/PS), Kyoto, MS1-4 (2013)

    Google Scholar 

  84. J. Sakaguchi, B. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanashi, K. Imamura, H. Inaba, K. Musaka, R. Sugizaki, T. Kobayashi, M. Watanabe, 19-core transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s, in OFC/NFOEC2012, Los Angeles, PDP5C.1 (2012)

    Google Scholar 

  85. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sakaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, T. Morioka, 1.01-Pb/s (12SDM/222 WDM/456Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregated spectral efficiency, in ECOC2012, Amsterdam, Th.3.C.1 (2012)

    Google Scholar 

  86. D. Qian, E. Ip, M.F. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y.K. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, T. Wang, 1.05Pb/s transmission with 109b/s/Hz spectral efficiency using hybrid single- and few-mode cores, in FiO2012, FW6C (2012)

    Google Scholar 

  87. T. Watanabe, Y. Kokubun, Ultra-large number of transmission channels in space division multiplexing using few-mode multi-core fiber with optimized air-hole-assisted double-cladding structure. Opt. Express 22(7), 8309–8319 (2014). https://doi.org/10.1364/OE.22.008309

    Article  ADS  Google Scholar 

  88. K. Tomozawa, Y. Kokubun, Maximum core capacity of heterogeneous uncoupled multi-core fibers, in OECC2011, Sapporo, 7C2-4 (2011)

    Google Scholar 

  89. Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, Failure prediction for long length optical fiber based on proof testing. J. Appl. Phys. 53(7), 4847–4853 (1982). https://doi.org/10.1063/1.331316

    Article  ADS  Google Scholar 

  90. IEC Technical Report IEC 62048, Optical fibres—Reliability—Power law theory (2002)

    Google Scholar 

  91. M. Tachikura, Y. Kurosawa, Y. Namekawa, Improved theoretical estimation of mechanical reliability of optical fibers. Proc. SPIE 5623, 622–629 (2005)

    Article  ADS  Google Scholar 

  92. J. Yamamoto, T. Yajima, Y. Kinoshita, F. Ishii, M. Yoshida, T. Hirooka, M. Nakazawa, Fabrication of multi core fiber by using slurry casting method, in The Optical Fiber Communication Conference, Th1H.5 (2016)

    Google Scholar 

  93. S. Nozoe, R. Fukumoto, T. Sakamoto, T. Matsui, Y. Amma, K. Takenaga, K. Tsujikawa, S. Aozasa, K. Aikawa, K. Nakajima, Low crosstalk 125 μm-cladding multi-core fiber with limited air-holes fabricated with over-cladding bundled rods technique, in The Optical Fiber Communication Conference, Th1H.6 (2017)

    Google Scholar 

  94. S. Nozoe, T. Sakamoto, T. Matsui, Y. Amma, K. Takenaga, Y. Abe, K. Tsujikawa, S. Aozasa, K. Aikawa, K. Nakajima, 125 μm-cladding 2LP-mode and 4-core multi-core fibre with air-hole structure for low crosstalk in C+L Band, in The European Conference on Optical Communication, W.1.B.3 (2017)

    Google Scholar 

  95. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, Lowcrosstalk and low-loss multi-core fiber utilizing fiber bend, in Optical Fiber Communication Conference, OWJ3 (2011)

    Google Scholar 

  96. M. Ohashi, Y. Miyoshi, H. Kubota, R. Maruyama, N. Kuwaki, Longitudinal fiber parameter measurements of multi-core fiber using OTDR. Opt. Express 22(24), 30137–30147 (2014). https://doi.org/10.1364/OE.22.030137

  97. M. Ohashi, K. Takenaga, S. Matsuo, Y. Miyoshi, Simple technique for measuring cut-off wavelength of multi-core fiber (MCF) and Its definition, in ACP2012, AF3A4 (2012)

    Google Scholar 

  98. ITU-T Recommendation G. 650.1 (2004)

    Google Scholar 

  99. K. Kitayama, M. Ohashi, Y. Ishida, Length dependence of effective cutoff wavelength in single-mode fibers. IEEE J. Lightwave Technol. LT-2(5), 629–634 (1983)

    Google Scholar 

  100. M. Ohashi, K. Kitayama, T. Kobayashi, Y. Ishida, LP11 mode loss measurements in the two-mode-propagation region of optical fibers. Opt. Lett. 9(7), 303–305 (1984). https://doi.org/10.1364/OL.9.000303

    Article  ADS  Google Scholar 

  101. M. Ohashi, N. Shibata, K. Sato, Evaluation of length dependence of cutoff wavelength in a cabled fiber. Opt. Lett. 13(12), 1123–1125 (1988). https://doi.org/10.1364/OL.13.001123

  102. M.S. O’Sullivan, J. Ferner, Interpretation of SM fiber OTDR signatures, in Proceedings of SPIE’86, vol. 661, pp. 171–176 (1986)

    Google Scholar 

  103. A. Rossaro, M. Schiano, T. Tambosso, D. D’Alessandro, Spatially resolved chromatic dispersion measurement by a bidirectional OTDR technique. IEEE J. Select. Topics Quantum Electron 7(3), 475–483 (2001). https://doi.org/10.1109/2944.962271

  104. M. Ohashi, Novel technique for measuring relative-index difference of fiber links. IEEE Photon. Technol. Lett. 18(24), 2584–2586 (2006). https://doi.org/10.1109/LPT.2006.887335

  105. K. Tsujikawa, M. Ohashi, K. Shiraki, M. Tateda, Effect of thermal treatment on Rayleigh scattering in silica-based glasses. Electron. Lett. 31, 1940–1941 (1995). https://doi.org/10.1049/el:19951331

  106. C. Pask, Physical interpretation of Petermann’s strange spot size for single-mode fibres. Electron. Lett. 20(3), 144–145 (1985). https://doi.org/10.1049/el:19840097

  107. N. Shibata, M. Kawachi, T. Edahiro, Optical loss characteristics of high-GeO2 content silica fibers. IEICE Trans. E63(12), 837–841 (1980)

    Google Scholar 

  108. K. Nakajima, M. Ohashi, M. Tateda, Chromatic dispersion distribution measurement along a single-mode optical fiber. IEEE J. Lightwave Technol. 15(7), 1095–1101 (1997). https://doi.org/10.1109/50.596954

    Article  ADS  Google Scholar 

  109. H. R. Stuart, Dispersive multiplexing in multimode optical fiber. Science 289(5477), 281–283 (2000). https://doi.org/10.1126/science.289.5477.281

  110. A.R. Shah, R.C.J. Hsu, A. Tarighat, A.H. Sayed, B. Jalali, Coherent optical MIMO (COMIMO). IEEE J. Lightwave Technol. 23(8), 2410–2419 (2005). https://doi.org/10.1109/JLT.2005.850787

    Article  ADS  Google Scholar 

  111. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, F. Yamamoto, M. Koshiba, Design of few-mode fibers for mode-division multiplexing transmission. IEEE Photon. J. 5(6), 7201207–7201207 (2013). https://doi.org/10.1109/JPHOT.2013.2292365

  112. T. Sakamoto, T. Mori, T. Yamamoto, N. Hanzawa, S. Tomita, F. Yamamoto, K. Saitoh, M. Koshiba, Mode-division multiplexing transmission system with DMD-independent low complexity MIMO processing. IEEE J. Lightw. Technol. 31(13), 2192–2199 (2013). https://doi.org/10.1109/JLT.2013.2263495

  113. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, F. Yamamoto, Experimental evaluation of modal crosstalk in two-mode fibre and its impact on optical MIMO transmission, in ECOC2014, Th.1.4.4 (2014)

    Google Scholar 

  114. R. Maruyama, N. Kuwaki, S. Matsuo, M. Ohashi, Experimental investigation of relation between mode-coupling and fiber characteristics in few-mode fibers, in OFC2015, M2C.1 (2015)

    Google Scholar 

  115. Y. Kokubun, T. Watanabe, S. Miura, R. Kawata, What is a mode in few mode fibers? Proposal of MIMO-free mode division multiplexing using true eigenmodes. IEICE Electron. Express 13(18), 20160394 (2016). https://doi.org/10.1587/elex.13.20160394

    Article  Google Scholar 

  116. S. Chen, J. Wang, PANDA-type elliptical-core multi-mode fiber with fully lifted eigenmodes for low-crosstalk direct fiber vector eigenmode space-division multiplexing, in The Optical Fiber Communication Conference, W4K.4 (2018)

    Google Scholar 

  117. S. Chen, J. Wang, Design of PANDA-type elliptical-core multimode fiber supporting 24 fully lifted eigenmodes. Opt. Lett. 43(15), 3718–3721 (2018). https://doi.org/10.1364/OL.43.003718

    Article  ADS  Google Scholar 

  118. T. Sakamoto, T. Mori, T. Yamamoto, S. Tomita, Differential mode delay managed transmission line for WDM-MIMO system using multi-step index fiber. IEEE J. Lightw. Technol. 30(17), 2783–2787 (2012). https://doi.org/10.1109/JLT.2012.2208095

  119. L.G-Nielsen, Y. Sun, J.W. Nicholson, D. Jakobsen, R. Lingle, Jr., B. Pálsdóttir, Few mode transmission fiber with low dgd, low mode coupling, and low loss, in OFC2012, PDP5A.1 (2012)

    Google Scholar 

  120. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, F. Yamamoto, Six-LP-mode transmission fiber with DMD of less than 70 ps/km over C+L band, in OFC2014, paper M3F.3 (2014)

    Google Scholar 

  121. P. Sillard, D. Molin, M. BigotAstruc, K. de Jongh, F. Achten, Low-differential-mode-group-delay 9-LP-mode fiber, in The Optical Fiber Communication Conference, Los Angeles, CA, USA, paper M2C.2 (2015)

    Google Scholar 

  122. F. Feng, G.S.D. Gordon, X.Q. Jin, D.C. O’Brien, F.P. Payne, Y. Jung, Q. Kang, J.K. Sahu, S.U. Alam, D.J. Richardson, T.D. Wilkinson, Experimental characterization of a graded-index ring-core fiber supporting 7 LP mode groups, in OFC2015, p. Tu2D.3 (2015)

    Google Scholar 

  123. R. Ryf, N.K. Fontaine, M. Montoliu, S. Randel, S.H. Chang, H. Chen, S. Chandrasekhar, A.H. Gnauck, R.-J. Essiambre, P.J. Winzer, T. Taru, T. Hayashi, T. Sasaki, Space-division multiplexed transmission over 3×3 Coupled-Core Multicore Fiber, in OFC2014, paperTu2J.4 (2014)

    Google Scholar 

  124. T. Hayashi, Y. Tamura, T. Hasegawa, T. Taru, 125-µm-cladding coupled multi-core fiber with ultra-low loss of 0.158 dB/km and record-low spatial mode dispersion of 6.1 ps/km1/2, in The Optical Fiber Communication Conference, Th5A.1 (2016)

    Google Scholar 

  125. T. Hayashi, Y. Tamura, T. Hasegawa, T. Taru, Record-low spatial mode dispersion and ultra-low loss coupled multi-core fiber for ultra-long-haul transmission. IEEE J. Lightw. Technol. 35(3,) 450–457 (2016). https://doi.org/10.1109/JLT.2016.2614000

  126. T. Sakamoto, S. Aozasa, T. Mori, M. Wada, T. Yamamoto, S. Nozoe, Y. Sagae, K. Tsujikawa, K. Nakajima, Randomly-coupled single-mode 12-core fiber with highest core density, in The Optical Fiber Communication Conference Th1H.1 (2017)

    Google Scholar 

  127. T. Sakamoto, S. Aozasa, T. Mori, M. Wada, T.Yamamoto, S. Nozoe, Y. Sagae, K. Tsujikawa, K. Nakajima, Twisting-rate-controlled 125 μm cladding randomly coupled single-mode 12-core fiber. IEEE J. Lightw. Technol. 36(2), 325–330 (2018). https://doi.org/10.1109/JLT.2017.2743205

  128. N.K. Fontaine, R. Ryf, M. Hirano, T. Sasaki, Experimental investigation of crosstalk accumulation in a ring-core fiber, in IEEE summer topical meeting, TuC4.2 (2013)

    Google Scholar 

  129. T. Mori, T. Sakamoto, M. Wada. T. Yamamoto, L. Ma, N. Hanzawa, K. Tsujikawa, S. Tomita, Few-mode photonic crystal fibre for wideband mode division multiplexing transmission, in ECOC2012, Tu.1.F.4 (2012)

    Google Scholar 

  130. M.N. Petrovich, F. Poletti, J.P. Wooler, A.M. Heidt, N.K. Baddela, Z. Li, D.R. Gray, R. Slavík, F. Parmigiani, N.V. Wheeler, J.R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, M. Becker, N. MacSuibhne, J. Zhao, F.C. Garcia Gunning, A.D. Ellis, P. Petropoulos, S.U. Alam, D.J. Richardson, First demonstration of 2 mm data transmission in a low-loss hollow core photonic bandgap fiber, in ECOC2012, Th.3.A.5 (2012)

    Google Scholar 

  131. Y. Jung, V.A.J.M. Sleiffer, N.K. Baddela, M.N. Petrovich, J.R. Hayes, N.V. Wheeler, D.R. Gray, E. Numkam Fokoua, J.P. Wooler, N.H.-L. Wong, F. Parmigiani, S.U. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H.de Waardt, F. Poletti, D.J. Richardson, First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing, in OFC2013, PDP5A.3 (2013)

    Google Scholar 

  132. R.E. Freund, C.-A. Bunge, N.N. Ledentsov, D. Molin, and C. Caspar, High-speed transmission in multimode fibers. IEEE J. Lightw. Technol. 28(4), 569–586 (2010). https://doi.org/10.1109/JLT.2009.2030897

  133. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, F. Yamamoto, Few-mode fibers supporting more than two LP modes for mode-division-multiplexed transmission with MIMO DSP. IEEE J. Lightw. Technol. 32, 2468–2479 (2014). https://doi.org/10.1109/JLT.2014.2327619

  134. K. Sato, R. Maruyama, N. Kuwaki, S. Matsuo, M. Ohashi, Optimized graded index two-mode optical fiber with low DMD, large Aeff and low bending loss. Opt. Express, 21(14), 16231–16238 (2013). https://doi.org/10.1364/OE.21.016231

  135. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, F. Yamamoto, Low DMD four LP mode transmission fiber for wide-band WDM-MIMO system, in The Optical Fiber Communications, Anaheim, CA, 2013, OTh3K.1.R (2013)

    Google Scholar 

  136. P. Sillard, D. Molin, A review of few-mode fibers for space-division multiplexed transmissions, in The 39th European Conference and Exhibition on Optical Communication, London, U.K., Mo.3.A.1 (2013)

    Google Scholar 

  137. F.M. Ferreira, D. Fonseca, H.J.A. da Silva, Design of few-mode fiberswith M-modes and lowdifferential mode delay. IEEE J. Lightw. Technol. 32(3), 353–360 (2014). https://doi.org/10.1109/JLT.2013.2293066

  138. P. Sillard, D. Molin, M. Bigot-Astruc, H. Maerten, D. Van Ras, F. Achten, Low-DMGD 6-LP-mode fiber, in The Optical Fiber Communication Conference, San Francisco, CA, p. M3F.2 (2014)

    Google Scholar 

  139. D. Marcuse, Pulse propagation in a two-mode waveguide. J. Bell Syst. Tech. 51, 1785–1791 (1972). https://doi.org/10.1002/j.1538-7305.1972.tb02683.x

  140. S. Kawakami, M. Ikeda, Transmission characteristics of a two-mode optical waveguide. IEEE J. Quantum Electron. QE-14(8), 608–614 (1978)

    Google Scholar 

  141. R. Maruyama, N. Kuwaki, S. Matsuo, K. Sato, M. Ohashi, Experimental evaluation of mode conversion ration at splice point for two-mode fibers and its simulated effect on MIMO transmission, in OFC 2014, M3F.6 (2014)

    Google Scholar 

  142. M. Nakazawa, M. Yoshida, T. Hirooka, Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR. Opt. Express 20(11), 12530–12540 (2012). https://doi.org/10.1364/OE.20.012530

    Article  ADS  Google Scholar 

  143. M. Nakazawa, M. Yoshida, T. Hirooka, Measurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR. Opt. Express 22(25), 31299–31309 (2014). https://doi.org/10.1364/OE.22.031299

    Article  ADS  Google Scholar 

  144. M. Nakazawa, M. Tokuda, Y. Negishi, Measurement of polarization mode coupling along a polarization-maintaining optical fiber using a backscattering technique. Opt. Lett. 8(10), 546–548 (1983). https://doi.org/10.1364/OL.8.000546

    Article  ADS  Google Scholar 

  145. M. Nakazawa, N. Shibata, M. Tokuda, Y. Negishi, Measurements of polarization mode couplings along polarization-maintaining single-mode optical fibers. J. Opt. Soc. Am. A 1(3), 285–292 (1984). https://doi.org/10.1364/JtheopticalsoA.1.000285

    Article  ADS  Google Scholar 

  146. K. Jespersen, Z.L.L. Grüner-Nielsen, B. Pálsdóttir, F. Poletti, J.W. Nicholson, Measuring distributed mode scattering in long, few-moded fibers, in OFC2012, p. OTh3I.4 (2012)

    Google Scholar 

  147. N.K. Fontaine, R. Ryf, M.A. Mestre, B. Guan, X. Palou, S. Randel, Y. Sun, L.G-Nielsen, R.V. Jensen, R. Lingle, Jr., Characterization of space-division multiplexing systems using a swept-wavelength interferometer, in OFC2013, OW1K.2 (2013)

    Google Scholar 

  148. R. Ryf, S. Randel, A.H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E.C. Burrows, R.-J Essiambre, P.J. Winzer, D.W. Peckham, A.H. McCurdy, R. Lingle, Mode-division multiplexing over 96 km of few-mode fiber using coherent 6x6 MIMO processing. IEEE J. Lightwave Technol. 30(24), 521–531 (2012). https://doi.org/10.1109/JLT.2011.2174336

  149. R. Kawata, T. Watanabe, Y. Kokubun, Full-set high-speed mode analysis in few-mode fibers by polarization-split segmented coherent detection method: Proposal and simulation of calculation error. IEICE Electron. Express 15(1), 20171132 (2018). https://doi.org/10.1587/elex.14.20171132

    Article  Google Scholar 

  150. Y. Sasaki, K. Takenaga, N. Guan, S. Matsuo, K. Saitoh, M. Koshiba, Large-effective-area uncoupled few-mode multi-core fiber. Opt. Express 20(26), B77-84 (2012). https://doi.org/10.1364/OE.20.000B77

    Article  Google Scholar 

  151. K. Mukasa, K. Imamura, R. Sugizaki, 7-core 2-mode fibers with large Aeff to simultaneously realize 3M, in The OptoElectronics and Communications Conference, Busan, Korea, 5C1-1 (2012)

    Google Scholar 

  152. K. Mukasa, K Imamura, R. Sugizaki, Multi-core few-mode optical fibers with large Aeff, in The European Conference on Optical Communication, P1.08 (Amsterdam, Netherlands, 2012)

    Google Scholar 

  153. T. Sakamoto, T. Mori, T. Yamamoto, M. Wada, F. Yamamoto, Moderately coupled 125-μm cladding 2 LP-mode 6-core fiber for realizing low MIMO-DSP and high spatial density, in The European Conference on Optical Communication, Cannes, France, Tu4.1.3 (2014)

    Google Scholar 

  154. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, S. Matsuo, Y. Tobita, N. Hanzawa, K. Nakajima, F. Yamamoto, Few-mode multi-core fibre with highest core multiplicity factor. in The European Conference on Optical Communication, Valencia, Spain, We.1.4.3 (2015)

    Google Scholar 

  155. K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saito, H. Nasu, T. Morioka, Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization, in The Optical Fiber Communication Conference, Los Angeles, CA, USA, Th5C.3 (2015)

    Google Scholar 

  156. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, 12-core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization, in The Optical Fiber Communication Conference, San Francisco, CA, USA, Th5B.2 (2014)

    Google Scholar 

  157. S. Matsuo, K. Takenaga, K. Saitoh, K. Nakajima, Y. Miyamoto, T. Morioka, High-spatial-multiplicity multi-core fibres for future dense space-division-multiplexing system, in The European Conference on Optical Communication, Valencia, Spain., Th.1.2.1 (2015)

    Google Scholar 

  158. J. Sakaguchi, W. Klaus, J.-M. D. Mendinueta, B.J. Puttnam1, R.S. Luis, Y. Awaji1, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, T. Kobayashi, Realizing a 36-core, 3-mode fiber with 108 spatial channels, in The Optical Fiber Communication Conference, Los Angeles, CA, USA, p. Th5C.2 (2015)

    Google Scholar 

  159. K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, M. Suzuki, 114 space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers, in The Optical Fiber Communication Conf., Los Angeles, CA, USA, Th5C.4 (2015)

    Google Scholar 

  160. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, T. Mizuno, Y. Abe, K. Shibahara, Y. Tobita, S. Matsuo, K. Aikawa, S. Aozasa, K. Nakajima, Y. Miyamoto, Low-loss and low-DMD few-mode multi-core fiber with highest core multiplicity factor, in The Optical Fiber Communication Conference, Th5A.2 (2016)

    Google Scholar 

  161. T. Sakamoto, K. Saitoh, S. Saitoh, Y. Abe, K. Takenaga, A. Urushibara, M. Wada, T. Matsui, K. Aikawa, K. Nakajima, 120 Spatial channel few-mode multi-core fibre with relative core multiplicity factor exceeding 100, in The European Conference on Optical Communication , We3E.3 (2018)

    Google Scholar 

  162. D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, M. Yoshida, K. Kasai, M. Nakazawa, H. Takahashi, K. Igarashi, I. Morita, M. Suzuki, 10.16-Peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+L Band. J. Lightw. Technol. 36(6), 1362–1368 (2018). https://doi.org/10.1109/JLT.2018.2799380

  163. J. Tu, K. Saitoh, K. Takenaga, S. Matsuo, Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay. Opt. Express 22(4), 4329–4341 (2014). https://doi.org/10.1364/OE.22.004329

    Article  ADS  Google Scholar 

  164. J. Tu, K. Saitoh, K. Takenaga, S. Matsuo, Heterogeneous trench-assisted few-mode multi-core fiber with graded-index profile and square-lattice layout for low differential mode delay. Opt. Express 23(14), 17783–17792 (2015). https://doi.org/10.1364/OE.23.017783

    Article  ADS  Google Scholar 

  165. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, Few-mode multicore fiber with 36 spatial modes (three modes (LP01 , LP 11a, LP11b) × 12 Cores). IEEE J. Lightw. Technol. 33(5), 964–970 (2015). https://doi.org/10.1109/JLT.2014.2375876

  166. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, Coupled multicore fiber design with low intercore differential mode delay for high-density space division multiplexing. IEEE J. Lightw. Technol. 33(6), 1175–1181(2015). https://doi.org/10.1109/JLT.2014.2376526

  167. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, T. Matsui, K. Nakajima, F. Yamamoto, Experimental and numerical evaluation of inter-core differential mode delay characteristic of weakly-coupled multi-core fiber. Opt. Express 22(26), 31966–31976 (2014). https://doi.org/10.1364/OE.22.031966

    Article  ADS  Google Scholar 

  168. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, Trench-assisted low-crosstalk few-mode multicore fiber, in ECOC2013, Mo.3.A.5 (2013)

    Google Scholar 

  169. K. Hogari, Y. Yamada, K. Toge, Novel optical fiber cables with ultrahigh density. IEEE J. Lightwave Technol. 26(17), 3104–3109 (2008). https://doi.org/10.1109/JLT.2008.926931

  170. K. Watanabe, T. Saito, K. Imamura, Y. Nakayama, and M. Shiino, Study of fusion splice for single-mode multicore fiber. in MOC 2011, Vol. 17, H-8 (2011)

    Google Scholar 

  171. K. Yoshida, A. Takahashi, T. Konuma, K. Yoshida, K. Sasaki, Fusion splicer for specialty optical fiber with advanced functions. Fujikura Techn. Rev. 41, 10–13 (2012)

    Google Scholar 

  172. M. Tanaka, M. Hachiwaka, Y. Fujimaki, H. Taniguchi, Butt joint of hexagonal cladding multi-core fiber (in Japanese). IEICE Technical Report (in Japanese), OFT2012-68, 77-82 (2013)

    Google Scholar 

  173. K. Hogari, Y. Yamada, K. Toge, Design and performance of ultra-high-density optical fiber cable with rollable optical fiber ribbons. OFT 16(4), 257–263 (2010). https://doi.org/10.1016/j.yofte.2010.05.00

    Article  Google Scholar 

  174. M. Yamanaka, K. Osato, K. Tomikawa, D. Takeda, Ultra-high density optical fiber cable with Spider Web Ribbon, in 61st International Wire & Cable Symposium (2012), pp. 37–41

    Google Scholar 

  175. S. Inao, T. Sato, H. Honda, M. Ogai, S. Sentsui, A. Otake, K. Yoshizaki, K. Ishihara, N. Uchida., High density multicore-fiber cable, in 28th International Wire & Cable Symposium (1979), pp. 370–384

    Google Scholar 

  176. I. Ishida, Y. Amma, K. Hirakawa, H. Uemura, Y. Sasaki, K. Takenaga, N. Itou, K. Osato, S. Matsuo, Multicore-fiber cable with core density of 6 cores/mm2, in OFC2014, W4D.3 (2014)

    Google Scholar 

  177. T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. HIraga, Y. Abe,. H. Ono. M.Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, Y. Yamada, M. Masuda, T. Morioka, 2×344 Tb/s propagateio-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-fielda digital back-propagation, in ECOC2013, PD3.E.4 (2013)

    Google Scholar 

  178. K. Takenaga, Multicore Fiber with Dual-Ring Structure. in OECC/ACOFT 2014, MO1E-5 (2014)

    Google Scholar 

  179. K. Osato, Y. Hashimoto, N. Okada, New design of optical fiber cable for easy mid-span access, in 56th International Wire & Cable Symposium (2007), pp. 225–229

    Google Scholar 

  180. I. Ishida, S. Matsuo, Ultra-high core-density cable with multicore fiber. OECC/ACOF 2015, 875–877 (2014)

    Google Scholar 

  181. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, Few-mode multicore fibre with 36 spatial modes (three modes (LP01, LP11a, LP11b) ×12 cores), in ECOC2014, Th.1.4.1 (2014)

    Google Scholar 

  182. T. Hayashi, T. Nagashima, T. Muramoto, F. Sato, T. Nakanishi, Spatial mode dispersion suppressed randomly-coupled multi-core fiber in straightened loose-tube cable, in The Optical Fiber Communication Conference, Th4A.2 (2019)

    Google Scholar 

  183. T. Tsuritani, D. Soma, Y. Wakayama, Y. Miyagawa, M. Takahashi, I. Morita, K. Maeda, K. Kawasaki, T. Matsuura, M. Tsukamoto, R. Sugizaki, Field test of installed high-density optical fiber cable with multi-core fibers toward practical deployment, in The Optical Fiber Communication Conference, M3J.4 (2019)

    Google Scholar 

  184. K. Nakajima, T. Matsui, k. Saito, T. Sakamoto, N. Araki, Multi-core fiber technology: Next generation optical communication strategy. IEEE Commun. Std. Mag. 38–45

    Google Scholar 

  185. S. Jain, T.C. May-Smith, V.J.F. Rancano, P. Petropoulos, D.J. Richardson, J.K. Sahu, Multi-element fiber for space-division multiplexed transmission, in ECOC, Mo.4.A.2 (2013)

    Google Scholar 

  186. T. Matsui, T. Kobayashi, H. Kawahara, E.L.T. de Gabory, T. Nagashima, T. Nakanishi, S. Saitoh, Y. Amma, K. Maeda, S. Arai, R. Nagase, Y. Albe, S. Aozasa, Y. Wakayama, H. Takeshita, T. Tsuritani, H. Ono, T. Sakamoto, I. Morita, Y. Miyamoto, K. Nakajima,118.5 Tbit/s transmission over 316 km-long multi-core fiber with standard cladding diameter, in OECC/PGC, PDP2 (2017)

    Google Scholar 

  187. R. Nagase, K. Sakaime, K. Watanabe, T. Saito, MU-type multi-core fiber connector. IWCS 61, 823–827 (2012)

    Google Scholar 

  188. K. Watanabe, T. Tsunetoshi, K. Suematsu, R. Nagase, M. Shiino, Development of small MT type 2-multicore fiber connector, in OFC2014, W4D.6 (2014)

    Google Scholar 

  189. K. Shikama, S. Asakawa, Y. Abe, T. Takahashi, Multiple multicore fiber connector with physical-contact connection. Electron. Lett. 51(10), 775–777 (2015). https://doi.org/10.1049/el.2015.0624

  190. Y. Geng, S. Li, M. J. Li, C.G. Sutton, R.L. MCCollum, R. L. McClure, A.V. Koklyushkin, K.I. Matthews, J.P. Luther, D. L. Butler, High-speed, bi-directional dual-core fiber transmission system for high-density, short-reach optical interconnects. Proc. SPIE 9390 (2015)

    Google Scholar 

  191. K. Saito, T. Matsui, K. Nakajima, T. Sakamoto, F. Yamamoto, T. Kurashima, Multi-core fiber based pluggable add/drop link using rotational connector, in OFC2015, M2B2 (2015)

    Google Scholar 

  192. ITU-T Recommendation G.652, Characteristics of a single-mode optical fibre and cable (2009)

    Google Scholar 

  193. ITU-T Recommendation G.657, Characteristics of a bending-loss insensitive single-mode optical fibre and cable for the access network (2012)

    Google Scholar 

  194. J.P. Moore, M.D. Rogge, Shape sensing using multi-core fiber optic cable and para-metric curve solutions. Opt. Express 20(3), 2967–2973 (2012)

    Article  ADS  Google Scholar 

  195. Fiber optic shape sensing, Luna Innovations Inc., Rev. 3, (2013)

    Google Scholar 

  196. Q. Wang, G. Farrell, All-fiber multimode-interference-based refractometer sensor: proposal and design. Opt. Lett. 31(3), 317–319 (2006). https://doi.org/10.1364/OL.31.000317

    Article  ADS  Google Scholar 

  197. ITU-T Supplement G.Sup.40, Optical fibre and cable Recommendations and standards guideline. (2010)

    Google Scholar 

  198. http://www.itu.int/en/ITU-T/studygroups/2013-2016/15/Pages/q5.aspx.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichiro Matsuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohashi, M. et al. (2022). Optical Fibers for Space-Division Multiplexing. In: Nakazawa, M., Suzuki, M., Awaji, Y., Morioka, T. (eds) Space-Division Multiplexing in Optical Communication Systems. Springer Series in Optical Sciences, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-030-87619-7_2

Download citation

Publish with us

Policies and ethics