Skip to main content

nnDetection: A Self-configuring Method for Medical Object Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12905))

Abstract

Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of high clinical relevance because diagnostic decisions often depend on rating of objects rather than e.g. pixels. For this task, the cumbersome and iterative process of method configuration constitutes a major research bottleneck. Recently, nnU-Net has tackled this challenge for the task of image segmentation with great success. Following nnU-Net’s agenda, in this work we systematize and automate the configuration process for medical object detection. The resulting self-configuring method, nnDetection, adapts itself without any manual intervention to arbitrary medical detection problems while achieving results en par with or superior to the state-of-the-art. We demonstrate the effectiveness of nnDetection on two public benchmarks, ADAM and LUNA16, and propose 11 further medical object detection tasks on public data sets for comprehensive method evaluation. Code is at https://github.com/MIC-DKFZ/nnDetection.

M. Baumgartner and P. F. Jäger—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armato, S.G., III., et al.: The lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scans. Medical physics 38(2), 915–931 (2011)

    Article  Google Scholar 

  2. Cao, H., et al.: A two-stage convolutional neural networks for lung nodule detection. IEEE J. Biomed. Health Inf. 24(7), 2006–2015 (2020)

    Google Scholar 

  3. Cuocolo, R. et al.: Deep learning whole-gland and zonal prostate segmentation on a public MRI dataset. J. Magn. Reson. Imaging 54(2), 452–459 (2021). https://doi.org/10.1002/jmri.27585. PMID: 33634932

  4. Ding, J., Li, A., Hu, Z., Wang, L.: Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 559–567. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_64

    Chapter  Google Scholar 

  5. Dou, Q., Chen, H., Jin, Y., Lin, H., Qin, J., Heng, P.-A.: Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 630–638. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_72

    Chapter  Google Scholar 

  6. Heller, N., et al.: The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes. arXiv preprint arXiv:1904.00445 (2019)

  7. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning: Methods, Systems, Challenges. Springer Nature, Cham (2019) https://doi.org/10.1007/978-3-030-05318-5

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Jaeger, P.F. et al.: Retina u-net: Embarrassingly simple exploitation of segmentation supervision for medical object detection. In: ML4H, pp. 171–183. PMLR (2020)

    Google Scholar 

  10. Jin, J., et al.: Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet. 62. Publisher: Elsevier (2020)

    Google Scholar 

  11. Khosravan, N., Bagci, U.: S4ND: single-shot single-scale lung nodule detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 794–802. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_88

    Chapter  Google Scholar 

  12. Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Computer-aided detection of prostate cancer in mri. IEEE TMI 33(5), 1083–1092 (2014)

    Google Scholar 

  13. Liu, J., Cao, L., Akin, O., Tian, Y.: 3DFPN-HS\(^2\): 3D feature pyramid network based high sensitivity and specificity pulmonary nodule detection. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 513–521. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_57

    Chapter  Google Scholar 

  14. Maier-Hein, L.: Why rankings of biomedical image analysis competitions should be interpreted with care. Nat. Commun. 9(1), 5217 (2018). Number: 1 Publisher: Nature Publishing Group

    Google Scholar 

  15. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR, pp. 7263–7271 (2017)

    Google Scholar 

  16. Roth, H.R., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_65

    Chapter  Google Scholar 

  17. Seff, A., Lu, L., Barbu, A., Roth, H., Shin, H.-C., Summers, R.M.: Leveraging mid-level semantic boundary cues for automated lymph node detection. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 53–61. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_7

    Chapter  Google Scholar 

  18. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. MedIA 42, 1–13 (2017)

    Google Scholar 

  19. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  20. Song, T., et al.: CPM-Net: a 3D center-points matching network for pulmonary nodule detection in CT scans. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 550–559. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_53

    Chapter  Google Scholar 

  21. Tabea Kossen, C., et al.: Cerebral aneurysm detection and analysis (March 2020)

    Google Scholar 

  22. Timmins, K., Bennink, E., van der Schaaf, I., Velthuis, B., Ruigrok, Y., Kuijf, H..: Intracranial Aneurysm Detection and Segmentation Challenge (2020)

    Google Scholar 

  23. Wang, B., Qi, G., Tang, S., Zhang, L., Deng, L., Zhang, Y.: Automated pulmonary nodule detection: high sensitivity with few candidates. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 759–767. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_84

    Chapter  Google Scholar 

  24. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: CVPR, pp. 9759–9768 (2020)

    Google Scholar 

  25. Zhu, W., Liu, C., Fan, W., Xie, X.: Deeplung: deep 3d dual path nets for automated pulmonary nodule detection and classification. In: WACV, pp. 673–681. IEEE (2018)

    Google Scholar 

  26. Zlocha, M., Dou, Q., Glocker, B.: Improving RetinaNet for CT lesion detection with dense masks from weak RECIST labels. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 402–410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_45

    Chapter  Google Scholar 

Download references

Acknowledgements

Part of this work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 410981386 and the Helmholtz Imaging Platform (HIP), a platform of the Helmholtz Incubator on Information and Data Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Baumgartner .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3025 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baumgartner, M., Jäger, P.F., Isensee, F., Maier-Hein, K.H. (2021). nnDetection: A Self-configuring Method for Medical Object Detection. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics