Skip to main content

Automatic Pose and Shape Initialization via Multiview Silhouette Images

  • Conference paper
  • First Online:
Brain Informatics (BI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12960))

Included in the following conference series:

  • 1765 Accesses

Abstract

Automatic pose and shape initialization is the first step to conquer the problem of human tracking, acquiring prior knowledge about the tracking subject. It is crucial for accomplishing a successful tracking. In this paper, we present a simple and effective framework to automatically calibrate the human pose and shape by integrating a data driven shape parameterization into the skeletal animation pipeline and optimizing the template body model against multiview silhouette images to acquire the tracking subject shape and pose information. A PCA based approach is proposed to summarize the space of human body variations in height, weight, muscle tone, gender, body shape. Multiview analysis by synthesis optimization in the hierarchial order is employed to realize pose and shape calibration. Finally, experiments on HumanEvaII and Human3.6m dataset demonstrate our approach is very effective and robust to real world situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Vertex weights are often assigned by graphics software or artists.

  2. 2.

    The skeleton root offset between the true posture and the template model.

  3. 3.

    The shape dimension difference ratio is defined by the subject body height divided by the template body height.

References

  1. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. In: SIGGRAPH 2003: ACM SIGGRAPH 2003 Papers, pp. 587–594. ACM Press, New York (2003). https://doi.org/10.1145/1201775.882311. http://grail.cs.washington.edu/projects/digital-human/pub/allen03space.pdf

  2. Allen, B., Curless, B., Popović, Z., Hertzmann, A.: Learning a correlated model of identity and pose-dependent body shape variation for real-time synthesis. In: SCA 2006: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 147–156. Eurographics Association, Aire-la-Ville (2006). http://portal.acm.org/citation.cfm?id=1218084

  3. Anguelov, D., et al.: SCAPE: shape completion and animation of people. ACM Trans. Graph. 24(3), 408–416 (2005)

    Article  Google Scholar 

  4. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Rockwood, A. (ed.) SIGGRAPH 1999, Computer Graphics Proceedings, pp. 187–194. Addison Wesley Longman, Los Angeles (1999). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.8314

  5. Blender: Blender is the free open source 3d content creation suite (2020). http://www.Blender.org

  6. Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., Seidel, H.P.: A statistical model of human pose and body shape. In: Dutr’e, P., Stamminger, M. (eds.) Computer Graphics Forum (Proceedings of the Eurographics 2008), Munich, Germany, vol. 2, March 2009

    Google Scholar 

  7. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014). https://doi.org/10.1109/TPAMI.2013.248, 3D

  8. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH, pp. 165–172 (2000)

    Google Scholar 

  9. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 34(6), 248:1–248:16 (2015)

    Google Scholar 

  10. Magnenat-Thalmann, N., Laperrière, R., Thalmann, D.: Joint-dependent local deformations for hand animation and object grasping. In: Proceedings on Graphics Interface 1988, pp. 26–33. Canadian Information Processing Society (1988)

    Google Scholar 

  11. Magnenat-Thalmann, N., Seo, H.: Data-driven approaches to digital human modeling. In: 3DPVT, pp. 380–387 (2004)

    Google Scholar 

  12. MakeHuman: Open source tool for making 3d characters (2020). http://www.makehuman.org

  13. Osman, A.A.A., Bolkart, T., Black, M.J.: STAR: sparse trained articulated human body regressor. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 598–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_36

    Chapter  Google Scholar 

  14. Powell, M.J.D.: A hybrid method for nonlinear equations. Numerical Methods for Nonlinear Algebraic Equations (1970). https://ci.nii.ac.jp/naid/10006528967/en/

  15. Sigal, L., Balan, A., Black, M.: HUMANEVA: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vis. 87, 4 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Song, G., Zhang, H. (2021). Automatic Pose and Shape Initialization via Multiview Silhouette Images. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds) Brain Informatics. BI 2021. Lecture Notes in Computer Science(), vol 12960. Springer, Cham. https://doi.org/10.1007/978-3-030-86993-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86993-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86992-2

  • Online ISBN: 978-3-030-86993-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics