Skip to main content

Energy Performance of a Service Building: Comparison Between EnergyPlus and TRACE700

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

The amount of energy consumed by a building can be estimated by performing dynamic simulations. In this study, two building simulation energy software, EnergyPlus, and TRACE700 were used to assess the energy performance of an existing service building. The building, placed in a specific zone of Portugal, has thirty people and a floor area of 2,000 m2. It consumes mainly electricity, natural gas, and solar energy. The dynamic simulation started with the weather file upload, and then the construction, illumination, interior equipment, and HVAC systems were defined. The results were compared with the actual energy consumption values, and the deviation was 2% in the case of EnergyPlus and 0.5% in the case of TRACE700.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Energia. Comissão Europeia

    Google Scholar 

  2. Economidou, M., Todeschi, V., Bertoldi, P., et al.: Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 225, 110322 (2020). https://doi.org/10.1016/j.enbuild.2020.110322

    Article  Google Scholar 

  3. Sultanguzin, I.A., Kruglikov, D.A., Yatsyuk, T.V., Kalyakin, I.D., Yavorovsky, Y., Govorin, A.V.: Using of BIM, BEM and CFD technologies for design and construction of energy-efficient houses. E3S Web Conf. 124, 03014 (2019). https://doi.org/10.1051/e3sconf/201912403014

    Article  Google Scholar 

  4. Gao, H., Koch, C., Wu, Y.: Building information modelling based building energy modelling: a review. Appl. Energy 238, 320–343 (2019). https://doi.org/10.1016/j.apenergy.2019.01.032

    Article  Google Scholar 

  5. Amani, N., Soroush, A.A.R.: Effective energy consumption parameters in residential buildings using Building Information Modeling. Glob. J. Environ. Sci. Manage. 6, 467–480 (2020). https://doi.org/10.22034/gjesm.2020.04.04

    Article  Google Scholar 

  6. Neymark, J., Judkoff, R.: International energy agency building energy simulation test and diagnostic method. Natl. Renew. Energy Lab. (2008)

    Google Scholar 

  7. Guzmán Garcia, E., Zhu, Z.: Interoperability from building design to building energy modeling. J. Build. Eng. 1, 33–41 (2015). https://doi.org/10.1016/J.JOBE.2015.03.001

    Article  Google Scholar 

  8. Esteves, D., Silva, J., Rodrigues, N., Martins, L., Teixeira, J., Teixeira, S.: Simulation of PMV and PPD thermal comfort using energyplus. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 52–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_4

    Chapter  Google Scholar 

  9. Noversa, R., Silva, J., Rodrigues, N., Martins, L., Teixeira, J., Teixeira, S.: Thermal simulation of a supermarket cold zone with integrated assessment of human thermal comfort. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 214–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_17

    Chapter  Google Scholar 

  10. Silva, J., et al.: Energy performance of a service building: comparison between energyplus and revit. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12254, pp. 201–213. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58817-5_16

    Chapter  Google Scholar 

  11. Lanzisera, S., Dawson-Haggerty, S., Cheung, H.Y.I., et al.: Methods for detailed energy data collection of miscellaneous and electronic loads in a commercial office building. Build. Environ. 65, 170–177 (2013)

    Article  Google Scholar 

  12. Palmero-marrero, A.I., Gomes, F., Sousa, J., Oliveira, A.C.: Energetic analysis of a thermal building using geothermal and solar energy sources. Energy Rep. 6, 201–206 (2020)

    Article  Google Scholar 

  13. Gao, Y., Li, S., Xingang, F., Dong, W., Bing, L., Li, Z.: Energy management and demand response with intelligent learning for multi-thermal-zone buildings. Energy 210, 118411 (2020)

    Article  Google Scholar 

  14. Queiroz, N., Westphal, F.S., Ruttkay Pereira, F.O.: A performance-based design validation study on EnergyPlus for daylighting analysis. Build. Environ. 183, 107088 (2020)

    Article  Google Scholar 

  15. Al-janabi, A., Kavgic, M., Mohammadzadeh, A., Azzouz, A.: Comparison of EnergyPlus and IES to model a complex university building using three scenarios: free-floating, ideal air load system, and detailed. J. Build. Eng. 22, 262–280 (2019)

    Article  Google Scholar 

  16. Chen, Y., Deng, Z., Hong, T.: Automatic and rapid calibration of urban building energy models by learning from energy performance database. Appl. Energy 277, 115584 (2020)

    Article  Google Scholar 

  17. Stevanović, S.: Optimization of passive solar design strategies: a review. Renew. Sustain. Energy Rev. 25, 177–196 (2013). https://doi.org/10.1016/j.rser.2013.04.028

    Article  Google Scholar 

  18. De Boeck, L., Verbeke, S., Audenaert, A., De Mesmaeker, L.: Improving the energy performance of residential buildings: a literature review. Renew. Sustain. Energy Rev. 52, 960–975 (2015). https://doi.org/10.1016/J.RSER.2015.07.037

    Article  Google Scholar 

  19. Hashempour, N., Taherkhani, R., Mahdikhani, M.: Energy performance optimization of existing buildings: a literature review. Sustain Cities Soc. 54, 101967 (2020). https://doi.org/10.1016/j.scs.2019.101967

    Article  Google Scholar 

  20. Crawley, D.B., Hand, J.W., Kummert, M., Griffith, B.T.: Contrasting the capabilities of building energy performance simulation programs. Build. Environ. 43, 661–673 (2008). https://doi.org/10.1016/j.buildenv.2006.10.027

    Article  Google Scholar 

  21. Sousa, J.: Energy simulation software for buildings: review and comparison. In: International Workshop on Information Technology for Energy Applicatons-IT4Energy, Lisabon, p. 12 (2012)

    Google Scholar 

  22. Shrivastava, R.L., Kumar, V., Untawale, S.P.: Modeling and simulation of solar water heater: a TRNSYS perspective. Renew. Sustain. Energy Rev. 67, 126–143 (2017). https://doi.org/10.1016/j.rser.2016.09.005

    Article  Google Scholar 

  23. Sadeghifam, A.N., Zahraee, S.M., Meynagh, M.M., Kiani, I.: Combined use of design of experiment and dynamic building simulation in assessment of energy efficiency in tropical residential buildings. Energy Build. 86, 525–533 (2015). https://doi.org/10.1016/j.enbuild.2014.10.052

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude for the support given by FCT within the R&D Units Project Scope UIDB/00319/2020 (ALGORITMI) and R&D Units Project Scope UIDP/04077/2020 (MEtRICs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brito, J., Silva, J., Teixeira, J., Teixeira, S. (2021). Energy Performance of a Service Building: Comparison Between EnergyPlus and TRACE700. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12949. Springer, Cham. https://doi.org/10.1007/978-3-030-86653-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86653-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86652-5

  • Online ISBN: 978-3-030-86653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics