Skip to main content

Desiccant Dehumidification Cooling System for Poultry Houses in Multan (Pakistan)

  • Chapter
  • First Online:
Energy-Efficient Systems for Agricultural Applications

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Poultry industries play a major role in Pakistan’s economy as well as developing countries. Poultry birds are sensitive to slight variation in ambient air temperature and humidity. Therefore, temperature-humidity control system is principally required for optimum growth of the birds. Conventionally, vapor-compression-based air-conditioning systems are used in poultry houses to control temperature and humidity. These systems degrade the environment and consume huge amount of primary energy. In this regard, the present study investigates energy-efficient thermally driven desiccant dehumidification-based evaporative cooling system for monthly basis climatic conditions of Multan (Pakistan). The present study explored standalone desiccant air-conditioning system (S-DAC) and Maisotsenko cycle assisted DAC system (M-DAC) using silica-gel and hydrophilic polymeric-sorbent desiccant materials from the viewpoints of slope of dehumidification line, dehumidification capacity, cooling capacity, and coefficient of performance (COP). In addition, the study explored surface temperature, surface area, total sensible heat loss, evaporative heat loss, total heat loss, and temperature-humidity index (THI) of the poultry birds. The results showed that the polymer-based M-DAC system was feasible in terms of maximum dehumidification capacity, cooling capacity, and COP (i.e., 4.3 g/kg-DA, 14.9 kJ/kg, and 0.5, respectively) and achieved thermal comfort (THI < 30℃) of poultry birds throughout the year.

Muhammad Aleem and Muhammad Sultan contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AC:

Air-conditioning

\({A}_{s}\) :

Surface area of bird (m2)

\(BW\) :

Body weight (kg)

COP:

Coefficient of performance (–)

DAC:

Desiccant air-conditioning

EC:

Evaporative cooling

\(EHL\) :

Evaporative heat loss (W/bird)

\(h\) :

Enthalpy of air (kJ/kg)

\({h}_{t}\) :

Heat transfer coefficient (W/m2 ℃)

HS:

Heat source

HX:

Heat exchanger

M-DAC:

Maisotsenko cycle assisted desiccant air-conditioning

\({Q}_{convection}\) :

Heat loss by convection (W/bird)

\({Q}_{radiation}\) :

Heat loss by radiation (W/bird)

\({Q}_{TSHL}\) :

Total sensible heat loss (W/bird)

\({Q}_{c}\) :

Cooling capacity (kJ/kg)

S-DAC:

Standalone desiccant air-conditioning

SHL:

Sensible heat loss (W/bird)

THI:

Temperature-humidity-index (°C)

\(THL\) :

Total heat loss (W/bird)

\(T\) :

Temperature (°C)

\({T}_{s}\) :

Surface temperature (°C)

\({T}_{a}\) :

Ambient temperature (°C)

\({V}_{air}\) :

Air velocity (m/s)

\(X\) :

Humidity ratio (g/kg-DA)

\(\Delta X\) :

Dehumidification capacity (g/kg-DA)

\(e\) :

Emissivity of bird (–)

\(\sigma\) :

Stefan–Boltzman constant (W/m2 K4)

\({\phi }^{*}\) :

Slope of dehumidification line (–)

\(\varepsilon\) :

Effectiveness (–)

DB :

Dry-bulb

HX :

Heat exchanger

in :

Inlet

out :

Outlet

PA :

Process air

RA :

Regeneration air

WB :

Wet-bulb

References

  1. Sultan M, El-Sharkawy II, Miyazaki T, Saha BB, Koyama S (2015) An overview of solid desiccant dehumidification and air conditioning systems. Renew Sustain Energy Rev 46:16–29. https://doi.org/10.1016/j.rser.2015.02.038

    Article  Google Scholar 

  2. Mahmood MH, Sultan M, Miyazaki T, Koyama S, Maisotsenko VS (2016) Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling. Renew Sustain Energy Rev 66:537–555. https://doi.org/10.1016/j.rser.2016.08.022

    Article  Google Scholar 

  3. Sultan M, Miyazaki T (2017) Energy-efficient air-conditioning systems for nonhuman applications. Refrigeration. https://doi.org/10.5772/intechopen.68865

    Article  Google Scholar 

  4. Sultan M, Miyazaki T, Koyama S, Khan ZM (2018) Performance evaluation of hydrophilic organic polymer sorbents for desiccant air-conditioning applications. Adsorpt Sci Technol 36:311–326. https://doi.org/10.1177/0263617417692338

    Article  Google Scholar 

  5. Minsitry of Finance. Pakistan economic survey n.d. http://www.finance.gov.pk/survey_1920.html (accessed December 28, 2020).

  6. Xin H, L. Berry I, T. Tabler G, L. Barton T. Temperature and Humidity Profiles of Broiler Houses with Experimental Conventional and Tunnel Ventilation Systems. Appl Eng Agric 1994;10:535–42. https://doi.org/10.13031/2013.25883.

  7. Raza HMU, Ashraf H, Shahzad K, Sultan M, Miyazaki T, Usman M, et al. Investigating applicability of evaporative cooling systems for thermal comfort of poultry birds in Pakistan. Appl Sci 2020;10. https://doi.org/10.3390/app10134445.

  8. Habib MF, Ali M, Sheikh NA, Badar AW, Mehmood S. Building thermal load management through integration of solar assisted absorption and desiccant air conditioning systems: A model-based simulation-optimization approach. J Build Eng 2020;30:101279. https://doi.org/10.1016/j.jobe.2020.101279.

  9. Lee JH, Ko JY, Jeong JW (2021) Design of heat pump-driven liquid desiccant air conditioning systems for residential building. Appl Therm Eng 183:116207. https://doi.org/10.1016/j.applthermaleng.2020.116207.

  10. Sultan M, Miyazaki T, Saha BB, Koyama S, Maisotsenko VS (2015) Steady-state Analysis on Thermally Driven Adsorption Air-conditioning System for Agricultural Greenhouses. Procedia Eng 118:185–192. https://doi.org/10.1016/j.proeng.2015.08.417

    Article  Google Scholar 

  11. Sultan M, Miyazaki T, Saha BB, Koyama S (2016) Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system. Renew Energy 86:785–795. https://doi.org/10.1016/j.renene.2015.09.015

    Article  Google Scholar 

  12. Mahmood MH, Sultan M, Miyazaki T (2020) Experimental evaluation of desiccant dehumidification and air-conditioning system for energy-efficient storage of dried fruits. Build Serv Eng Res Technol 41:454–465. https://doi.org/10.1177/0143624419893660

    Article  Google Scholar 

  13. Sultan M, Miyazaki T, Koyama S (2018) Optimization of adsorption isotherm types for desiccant air-conditioning applications. Renew Energy 121:441–450. https://doi.org/10.1016/j.renene.2018.01.045

    Article  Google Scholar 

  14. Sultan M, Miyazaki T, Mahmood MH, Khan ZM (2018) Solar assisted evaporative cooling based passive air-conditioning system for agricultural and livestock applications. J Eng Sci Technol 13:693–703

    Google Scholar 

  15. Niaz H, Sultan M, Khan AA, Miyazaki T, Feng Y, Khan ZM et al (2019) Study on evaporative cooling assisted desiccant air conditioning system for livestock application in Pakistan. Fresenius Environ Bull 28:8623–8633

    Google Scholar 

  16. Kashif M, Niaz H, Sultan M, Miyazaki T, Feng Y, Usman M, et al (2020) Study on desiccant and evaporative cooling systems for livestock thermal comfort: Theory and experiments. Energies 13. https://doi.org/10.3390/en13112675.

  17. Daou K, Wang RZ, Xia ZZ (2006) Desiccant cooling air conditioning: a review. Renew Sustain Energy Rev 10:55–77. https://doi.org/10.1016/j.rser.2004.09.010.

  18. La D, Dai YJ, Li Y, Wang RZ, Ge TS (2010) Technical development of rotary desiccant dehumidification and air conditioning: A review. Renew Sustain Energy Rev 14:130–47. https://doi.org/10.1016/j.rser.2009.07.016.

  19. Mei L, Dai YJ (2008) A technical review on use of liquid-desiccant dehumidification for air-conditioning application. Renew Sustain Energy Rev 12:662–89. https://doi.org/10.1016/j.rser.2006.10.006.

  20. Saghafifar M, Gadalla M (2015) Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler. Energy 87:663–77. https://doi.org/10.1016/j.energy.2015.05.035.

  21. Amer O, Boukhanouf R, Ibrahim HG (2015) A Review of Evaporative Cooling Technologies. Int J Environ Sci Dev 6:111–117. https://doi.org/10.7763/ijesd.2015.v6.571

    Article  Google Scholar 

  22. Gao WZ, Cheng YP, Jiang AG, Liu T, Anderson K (2015) Experimental investigation on integrated liquid desiccant – Indirect evaporative air cooling system utilizing the Maisotesenko–Cycle. Appl Therm Eng 88:288–96. https://doi.org/10.1016/j.applthermaleng.2014.08.066.

  23. Miyazaki T, Nikai I, Akisawa A (2011) Simulation analysis of an open-cycle adsorption air conditioning system-numeral modeling of a fixed bed dehumidification unit and the maisotsenko cycle cooling unit. Int J Energy a Clean Environ 12:341–354. https://doi.org/10.1615/InterJEnerCleanEnv.2012005977

    Article  Google Scholar 

  24. Lara LJ, Rostagno MH (2013) Impact of heat stress on poultry production. Animals 3:356–369. https://doi.org/10.3390/ani3020356

    Article  Google Scholar 

  25. Saeed M, Abbas G, Alagawany M, Kamboh AA, Abd El-Hack ME, Khafaga AF et al (2019) Heat stress management in poultry farms: A comprehensive overview. J Therm Biol 84:414–425. https://doi.org/10.1016/j.jtherbio.2019.07.025

    Article  Google Scholar 

  26. Defra. Heat Stress in Poultry Solving the Problem n.d. https://assets.publishing.service.gov.uk/%0Agovernment/uploads/system/uploads/attachment_data/file/69373/pb10543-heat-stress-050330.pdf (accessed December 29, 2020).

  27. Moreng RE, Shaffner CS (1951) Lethal Internal Temperatures for the Chicken, from Fertile Egg to Mature Bird1. Poult Sci 30:255–66. https://doi.org/10.3382/ps.0300255.

  28. Cassuce, Déborah C., Tinôco, Il da de F. F., Baêta, Fernando C., Zolnier, Sérgio, Cecon, Paulo R., & Vieira M de FA (2013) Thermal comfort temperature update for broiler chickens up to 21 days of age. Eng Agrícola 33(1):28–36.

    Google Scholar 

  29. Cândido MGL, Tinôco I de FF, Pinto F de A d. C, Santos NT, Roberti RP (2016) Determination of thermal comfort zone for early-stage broilers. Eng Agric 36:760–7. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n5p760-767/2016.

  30. Nascimento ST, Maia ASC, Gebremedhin KG, Nascimento CCN (2017) Metabolic heat production and evaporation of poultry. Poult Sci 96:2691–8. https://doi.org/10.3382/ps/pex094.

  31. Sultan M, El-Sharkawy II, Miyazaki T, Saha BB, Koyama S, Maruyama T et al (2016) Water vapor sorption kinetics of polymer based sorbents: Theory and experiments. Appl Therm Eng 106:192–202. https://doi.org/10.1016/j.applthermaleng.2016.05.192

    Article  Google Scholar 

  32. Sultan M, Miyazaki T, Saha BB, Koyama S, Kil HS, Nakabayashi K et al (2018) Adsorption of Difluoromethane (HFC-32) onto phenol resin based adsorbent: Theory and experiments. Int J Heat Mass Transf 127:348–356. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.097

    Article  Google Scholar 

  33. Shabir F, Sultan M, Miyazaki T, Saha BB, Askalany A, Ali I et al (2020) Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications. Renew Sustain Energy Rev 119:109630. https://doi.org/10.1016/j.rser.2019.109630

    Article  Google Scholar 

  34. Aleem M, Hussain G, Sultan M, Miyazaki T, Mahmood MH, Sabir MI, et al (2020) Experimental investigation of desiccant dehumidification cooling system for climatic conditions of multan (pakistan). Energies13. https://doi.org/10.3390/en13215530.

  35. Mahmood MH, Sultan M, Miyazaki T (2020) Solid desiccant dehumidification-based air-conditioning system for agricultural storage application: Theory and experiments. Proc Inst Mech Eng Part A J Power Energy 234:534–547. https://doi.org/10.1177/0957650919869503

    Article  Google Scholar 

  36. ASHRAE (2013) Handbook of Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers. Atlanta, GA, USA

    Google Scholar 

  37. Yahav S, Straschnow A, Luger D, Shinder D, Tanny J, Cohen S (2004) Ventilation, sensible heat loss, broiler energy, and water balance under harsh environmental conditions. Poult Sci 83:253–258. https://doi.org/10.1093/ps/83.2.253

    Article  Google Scholar 

  38. Van Brecht A, Hens H, Lemaire JL, Aerts JM, Degraeve P, Berckmans D (2005) Quantification of the heat exchange of chicken eggs. Poult Sci 84:353–361. https://doi.org/10.1093/ps/84.3.353

    Article  Google Scholar 

  39. Mitchell HH (1930) The surface area of single comb White Leghorn Chickens. J Nutr 2:443–449. https://doi.org/10.1093/jn/2.5.443

    Article  Google Scholar 

  40. Nascimento GR, Nääs IA, Pereira DF, Baracho MS, Garcia R (2011) Assessment of broiler surface temperature variation when exposed to different air temperatures. Rev Bras Cienc Avic 13:259–263. https://doi.org/10.1590/S1516-635X2011000400007

    Article  Google Scholar 

  41. Aerts JM, Berckmans D (2004) A virtual chicken for climate control design: Static and dynamic simulations of heat losses. Trans Am Soc Agric Eng 47:1765–72. https://doi.org/10.13031/2013.17619.

Download references

Acknowledgements

This research work has been carried out in the Department of Agricultural Engineering, Bahauddin Zakariya University, Multan-Pakistan. This research was funded by Bahauddin Zakariya University, Multan-Pakistan under the Director Research/ ORIC grants awarded to Principal Investigator Dr. Muhammad Sultan.

Funding

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sultan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aleem, M., Sultan, M., Mahmood, M.H., Miyazaki, T. (2022). Desiccant Dehumidification Cooling System for Poultry Houses in Multan (Pakistan). In: Sultan, M., Miyazaki, T. (eds) Energy-Efficient Systems for Agricultural Applications. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-86394-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86394-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86393-7

  • Online ISBN: 978-3-030-86394-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics