Abstract
In order to study the behavior and performance of a robot, building its simulation model is crucial. Realistic simulation tools using physics engines enable faster, more accurate and realistic testing conditions, without depending on the real vehicle. By combining legged and wheeled locomotion, hybrid vehicles are specially useful for operating in different types of terrains, both indoors and outdoors. They present increased mobility, versatility and adaptability, as well as easier maneuverability, when compared to vehicles using only one of the mechanisms. This paper presents the realistic simulation through the SimTwo simulator software of a hybrid legged-wheeled robot. It has four 3-DOF (degrees of freedom) legs combining rigid and non-rigid joints and has been fully designed, tested and validated in the simulated environment with incorporated dynamics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pinto, V.H., Gonçalves, J., Costa, P.: Design, modeling, and control of a single leg for a legged-wheeled locomotion system with non-rigid joint. Actuators 10(2), 29 (2021). https://doi.org/10.3390/act10020029
Lacagnina, M., Muscato, G., Sinatra, R.: Kinematics, dynamics and control of a hybrid robot Wheeleg. Robot. Auton. Syst. 45(3–4), 161–180 (2003). https://doi.org/10.1016/j.robot.2003.09.006
Ottaviano, E., Rea, P.: Design and operation of a 2-DOF leg-wheel hybrid robot. Robotica 31(8), 1319–1325 (2013). https://doi.org/10.1017/S0263574713000556
Bruzzone, L., Fanghella, P.: Mantis: hybrid leg-wheel ground mobile robot. Ind. Robot: Int. J. (2014). https://doi.org/10.1108/IR-02-2013-330
Halme, A., Leppänen, I., Suomela, J., Ylönen, S., Kettunen, I.: WorkPartner: interactive human-like service robot for outdoor applications. Int. J. Robot. Res. 22(7–8), 627–640 (2003)
Kashiri, N., et al.: CENTAURO: a hybrid locomotion and high power resilient manipulation platform. IEEE Robot. Autom. Lett. 4(2), 1595–1602 (2019). https://doi.org/10.1109/LRA.2019.2896758
Schwarz, M., et al.: NimbRo rescue: solving disaster-response tasks with the mobile manipulation robot Momaro. J. Field Robot. 34(2), 400–425 (2017). https://doi.org/10.1002/rob.21677
Peng, H., Wang, J., Shen, W., Shi, D.: Cooperative attitude control for a wheel-legged robot. Peer-to-Peer Netw. Appl. 12(6), 1741–1752 (2019). https://doi.org/10.1007/s12083-019-00747-x
Chen, Z., et al.: Control strategy of stable walking for a hexapod wheel-legged robot. ISA Trans. (2020). https://doi.org/10.1016/j.isatra.2020.08.033
Bjelonic, M., Sankar, P.K., Bellicoso, C.D., Vallery, H., Hutter, M.: Rolling in the deep-hybrid locomotion for wheeled-legged robots using online trajectory optimization. IEEE Robot. Autom. Lett. 5(2), 3626–3633 (2020). https://doi.org/10.1109/LRA.2020.2979661
Boxerbaum, A.S., Oro, J., Peterson, G., Quinn, R.D.: The latest generation Whegs\(^{{\rm TM}}\) robot features a passive-compliant body joint. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1636–1641 (2008)
Eich, M., Grimminger, F., Bosse, S., Spenneberg, D., Kirchner, F.: Asguard: a hybrid-wheel security and SAR-robot using bio-inspired locomotion for rough terrain. In: Proceedings ROBIO, pp. 774–779 (2008)
Chen, S.C., Huang, K.J., Chen, W.H., Shen, S.Y., Li, C.H., Lin, P.C.: Quattroped: a leg-wheel transformable robot. IEEE/ASME Trans. Mechatron. 19(2), 730–742 (2013). https://doi.org/10.1109/TMECH.2013.2253615
Chen, W.H., Lin, H.S., Lin, Y.M., Lin, P.C.: TurboQuad: a novel leg-wheel transformable robot with smooth and fast behavioral transitions. IEEE Trans. Robot. 33(5), 1025–1040 (2017). https://doi.org/10.1109/TRO.2017.2696022
Bai, L., Guan, J., Chen, X., Hou, J., Duan, W.: An optional passive/active transformable wheel-legged mobility concept for search and rescue robots. Robot. Auton. Syst. 107, 145–155 (2018). https://doi.org/10.1016/j.robot.2018.06.005
Rivera, Z.B., De Simone, M.C., Guida, D.: Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 7(2), 42 (2019). https://doi.org/10.3390/machines7020042
Michel, O.: Cyberbotics Ltd., Webots\(^{\rm TM}\): professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 5 (2004)
Paulo, C., José, G., José, L., Paulo, M.: SimTwo realistic simulator: a tool for the development and validation of robot software. Theory Appl. Math. Comput. Sci. 1(1), 17–33 (2011)
Kamedula, M., Kashiri, N., Tsagarakis, N.G.: On the kinematics of wheeled motion control of a hybrid wheeled-legged CENTAURO robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2426–2433. IEEE (2018)
Suzumura, A., Fujimoto, Y.: Real-time motion generation and control systems for high wheel-legged robot mobility. IEEE Trans. Ind. Electron. 61(7), 3648–3659 (2013). https://doi.org/10.1109/TIE.2013.2286071
Pinto, V.H., Gonçalves, J., Costa, P.: Towards a more robust non-rigid robotic joint. Appl. Syst. Innov. 3(4), 45 (2020). https://doi.org/10.3390/asi3040045
Acknowledgements
This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project UIDB/50014/2020.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Soares, I.N., Pinto, V.H., Lima, J., Costa, P. (2022). Realistic 3D Simulation of a Hybrid Legged-Wheeled Robot. In: Chugo, D., Tokhi, M.O., Silva, M.F., Nakamura, T., Goher, K. (eds) Robotics for Sustainable Future. CLAWAR 2021. Lecture Notes in Networks and Systems, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-86294-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-86294-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86293-0
Online ISBN: 978-3-030-86294-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)