Skip to main content

Fungal Communities from Different Habitats for Tannins in Industry

  • Chapter
  • First Online:
Industrially Important Fungi for Sustainable Development

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1274 Accesses

Abstract

Tannin acyl hydrolase, commonly known as tannase, is found as an intracellular or extracellular enzyme. Filamentous fungi were reported to dominate among all tannase-producing microorganisms. Despite its long history and numerous publications, tannase is still considered one of the costly industrial enzymes. The production and applications of tannase have been extensively studied; researches related to strain isolation and improvement, process development, and applications of tannases have resulted in a great number of scientific publications. The enzyme has potential uses in the treatment of tannery or industrial effluents. This chapter presents an overview of the natural substrate of tannins, fungal production of tannins, production of tannase by fermentation, and tannase applications in food and other industrial products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Azeem AM, Yadav AN, Yadav N, Usmani Z (2021) Industrially important fungi for sustainable development, Biodiversity and ecological perspective, vol 1. Springer, Cham

    Google Scholar 

  • Abdel-Nabey MA, Sherief AA, El-Tanash AB (2011) Tannin biodegradation and some factors affecting tannase production by two Aspergillus sp. Biotechnology 10:149–158

    CAS  Google Scholar 

  • Abo Nouh FA (2019) Endophytic fungi for sustainable agriculture. Microb Biosyst 4:31–44

    Google Scholar 

  • Abou-Bakr HA, El-Sahn MA, El-Banna AA (2013) Screening of tannase-producing fungi isolated from tannin-rich sources. Int J Agric Food Res 2:1–12

    Google Scholar 

  • Aguilar CN, Gutierrez-Sanchez G (2001) Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci Technol Int 7:375–382

    Google Scholar 

  • Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302

    CAS  PubMed  Google Scholar 

  • Aguilar CN, Favela-Torres E, Viniegra-Gonzalez G, Augur C (2002) Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20. Appl Biochem Biotechnol 103:407–414

    Google Scholar 

  • Aguilar CN, Rodriguez R, Gutierrez-Sanchez G, Augur C, Favela-Torres E, Prado-Barragan LA et al (2007) Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 76:47–59

    CAS  PubMed  Google Scholar 

  • Aguilar-Zárate P, Cruz-Hernández MA, Montañez JC, Belmares-Cerda RE, Aguilar CN (2014) Bacterial tannase: production, properties and applications. Rev Mex Ing Quím 13:63–67

    Google Scholar 

  • Al-Mraai STY, Al-Fekaiki DF, Abd Al-Manhel AJ (2019) Purification and characterization of tannase from the local isolate of Aspergillus niger. J App Biol Biotechnol 7:029–034

    CAS  Google Scholar 

  • Anwar YAS, Imartika H (2007) The production of tannin acyl hydrolase from Aspergillus niger. J Microbiol Indonesia 1:91–94

    Google Scholar 

  • Aoki K, Shinke R, Nishira H (1976) Purification and some properties of yeast tannase. Agric Biol Chem 40:79–85

    CAS  Google Scholar 

  • Bajpai B, Patil S (1997) Introduction of tannin acyl hydrolase (EC 3.1.1.20) activity on some members of fungi imperfecti. Enzym Microb Technol 20:612–614

    CAS  Google Scholar 

  • Bajpai B, Patil S (2008) A new approach to microbial production of gallic acid. Braz J Microbiol 39:708–711

    PubMed  PubMed Central  Google Scholar 

  • Banerjee D, Mondal K, Bikas R (2001) Production and characterization of extracellular and intracellular tannase from newly isolated Aspergillus aculeatus DBF9. J Basic Microbiol 6:313–318

    Google Scholar 

  • Banerjee R, Mukherjee G, Patra KC (2005) Microbial transformation of tannin-rich substrate to gallic acid through co-culture method. Bioresour Technol 96:949–953

    CAS  PubMed  Google Scholar 

  • Banerjee D, Mahapatra S, Pati BR (2007) Gallic acid production by submerged fermentation of Aspergillus aculeatus DBF9. Res J Microbiol 2:462–468

    CAS  Google Scholar 

  • Barthomeuf C, Regerat F, Pourrat H (1994) Production, purification and characterization of a tannase from Aspergillus niger LCF8. J Ferment Bioeng 77:320–323

    CAS  Google Scholar 

  • Barton HA (2006) Introduction to cave geomicrobiology: a review for the nonspecialist. J Cave Karst Stud 68:43–54

    Google Scholar 

  • Batra A, Saxena RK (2005) Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem 40:1553–1557

    CAS  Google Scholar 

  • Beena PS (2010) Production, purification, genetic characterization and application studies of tannase enzyme from marine fungus Aspergillus awamori. PhD Thesis, Faculty of Science Cochin University

    Google Scholar 

  • Bele AA, Jadhav VM, Kadam VJ (2010) Potential of tannins: a review. Asian J Plant Sci 9:209–214

    Google Scholar 

  • Belmares R, Contreras-Esquivel JC, Rodriguez-Herrera R, Coronel AR, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. Lebensm Wiss Technol 37:857–864

    CAS  Google Scholar 

  • Bel-Rhlid R, Kraehenbuehl K, Cavin C, Raab TW, Page N (2009) Compositions for preparing a coffee beverage comprising hydrolysed chlorogenic acid, World Intellectual Property Organization Patent Application (WO09132887)

    Google Scholar 

  • Belur PD, Mugeraya G (2011) Microbial production of tannase. Res J Microbiol 6:25–40

    CAS  Google Scholar 

  • Belur PD, Gopal M, Nirmala KR, Basavaraj N (2010) Production of novel cell-associated tannase from newly isolated Serratia ficaria DTC. J Microbiol Biotechnol 20:732–736

    CAS  PubMed  Google Scholar 

  • Beniwal V, Kumar A, Goel G, Chhokar V (2013) A novel low molecular weight acido-thermophilic tannase from Enterobacter cloacae MTCC 9125. Biocatal Agric Biotechnol 2:132–137

    Google Scholar 

  • Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins – a current perspective. Biodegradation 9:343–357

    CAS  PubMed  Google Scholar 

  • Boadi DK, Neufeld RJ (2001) Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb Technol 28:590–595

    CAS  PubMed  Google Scholar 

  • Bradoo S, Gupta R, Saxena R (1996) Screening of extracellular tannase producing fungi: development of a rapid simple plate assay. J Gen Appl Microbiol 42:325–329

    CAS  Google Scholar 

  • Bradoo S, Gupta R, Saxena RK (1997) Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus. Process Biochem 32:135–139

    CAS  Google Scholar 

  • Brahmbhatt D, Modi HA, Jain NK (2014) Preliminary isolation and screening of tannase producing bacteria and fungi. Int J Curr Microbiol App Sci 311:193–203

    Google Scholar 

  • Cantarelli C, Brenna O, Giovanelli G, Rossi M (1989) Beverage stabilization through enzymatic removal of phenolics. Food Biotechnol 3:203–213

    CAS  Google Scholar 

  • Cavalcanti RMF, Ornela PHDO, Jorge JA, Guimarães LHS (2017) Screening, selection and optimization of the culture conditions for tannase production by endophytic fungi isolated from Caatinga. J Appl Biol Biotechnol 5:001–009

    CAS  Google Scholar 

  • Chaitanyakumar A, Anbalagan M (2016) Expression, purification and immobilization of tannase from Staphylococcus lugdunensis MTCC 3614. AMB Express 6:89

    PubMed  PubMed Central  Google Scholar 

  • Chen GH, Yang CY, Lee SJ, Wu CC, Tzen JT (2014) Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude. J Food Drug Anal 22:303–309

    PubMed  Google Scholar 

  • Choi HJ, Song JH, Bhatt LR, Baek SH (2010) Anti-human rhinovirus activity of gallic acid possessing antioxidant capacity. Phytother Res 24:1292–1296

    CAS  PubMed  Google Scholar 

  • Costa AM, Ribeiro WX, Kato E, Monteiro ARG, Peralta RM (2008) Production of tannase by Aspergillus tamarii in submerged cultures. Braz Arch Biol Technol 51:399–404

    CAS  Google Scholar 

  • Cruz-Hernandez M, Contreras-Esquivel JC, Lara F, Rodrıguez R, Aguilar CN (2005) Isolation and evaluation of tannin-degrading fungal strains from the Mexican desert. Z Naturforsch C J Biosci 60:844–848

    CAS  PubMed  Google Scholar 

  • Curiel JA, Rodríguez H, Acebrón I, Mancheño JM, De Las RB, Rosario M (2009) Production and physicochemical properties of recombinant Lactobacillus plantarum tannase. J Agric Food Chem 57:6224–6230

    CAS  PubMed  Google Scholar 

  • Curiel JA, Betancor L, de las Rivas B, Munoz R, Guisan JM, Fernandez-Lorente G (2010) Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of tannase from Lactobacillus plantarum. J Agric Food Chem 58:6403–6409

    CAS  PubMed  Google Scholar 

  • De Lima JS, Cruz R, Fonseca JC, de Medeiros EV, Maciel MDHC, Moreira KA, Motta CMDS (2014) Production, characterization of tannase from Penicillium montanense URM 6286 under SSF using agroindustrial wastes, and application in the clarification of grape juice (Vitis vinifera L.). ScientificWorldJournal 2014:182025

    PubMed  PubMed Central  Google Scholar 

  • De Melo AG, Souza PNDC, Maia NDC, Thomas AB, da Silva LBR, Batista LR et al (2013) Screening and identification of tannase-producing fungi isolated from Brazilian caves. Afr J Microbiol Res 7:483–487

    Google Scholar 

  • De Sena AR, dos Santos ACDB, Gouveia MJ, de Mello MRF, Leite TCC, Moreira KA et al (2014) Production, characterization and application of a thermostable tannase from Pestalotiopsis guepinii URM 7114. Food Technol Biotechnol 52:459–467

    Google Scholar 

  • Deschamps AM, Otuk G, Lebeault JM (1983) Production of tannase and degradation of chestnut tannin by bacteria. J Ferment Technol 61:55–59

    CAS  Google Scholar 

  • Duenas M, Hernandez T, Estrella I (2007) Influence of the action of exogenous enzymes on the polyphenolic composition of pea: effect on the antioxidant activity. Eur Food Res Technol 225:493–500

    CAS  Google Scholar 

  • Duenas M, Hernandez T, Estrella I (2009) Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chem 101:90–97

    Google Scholar 

  • Enemuor SCL, Odibo FJC (2009) Culture conditions for the production of a tannase of Aspergillus tamarii IMI388810 (B). Afr J Biotechnol 8:2554–2557

    CAS  Google Scholar 

  • Falcão L, Araújo MEM (2018) Vegetable tannins used in the manufacture of historic leathers. Molecules 23:1–20

    Google Scholar 

  • Fan FY, Shi M, Nie Y, Zhao Y, Ye JH, Liang YR (2016) Differential behaviors of tea catechins under thermal processing: formation of non-enzymatic oligomers. Food Chem 196:347–354

    CAS  PubMed  Google Scholar 

  • Farag AM, Hassan SW, El-Says AM, Ghanem KM (2018) Purification, characterization and application of tannase enzyme isolated from marine Aspergillus nomius GWA5. J Pure Appl Microbiol 12:1939–1949

    CAS  Google Scholar 

  • Farhaan MM, Patil RC (2019) Screening and characterisation of tannase producing fungi from soil near tannery industry. Eur J Biotechnol Biosci 7:68–70

    Google Scholar 

  • Farias GM, Gorbea C, Elkins JR, Griffin GJ (1994) Purification characterization and substrate relationships of the tannase from Cryphonectria parasitica. Physiol Mol Plant Pathol 44:51–63

    CAS  Google Scholar 

  • Frutos P, Hervas G, Giráldez FJ, Mantecón AR (2004) Tannins and ruminant nutrition. Spanish J Agric Res 2:191–202

    Google Scholar 

  • Gayen S, Ghosh U (2013) Purification and characterization of tannin acyl hydrolase produced by mixed solid-state fermentation of wheat bran and marigold flower by Penicillium notatum NCIM 923. Bio Med Res Int 2013:1–6

    Google Scholar 

  • Georgei DS, Ong CB (2013) Improvement of tannase production under submerged fermentation by Aspergillus niger FBT1 isolated from a mangrove forest. Bio Technol 94:45–456

    Google Scholar 

  • Girdhari SN, Peshwe SA (2015) Isolation and screening of tannase producing fungi. Int J Curr Microbiol App Sci 4:765–774

    CAS  Google Scholar 

  • Goel G, Puniya AK, Singh K (2007) Phenotypic characterization of tannin–protein complex degrading bacteria from faeces of goat. Small Ruminant Res 69:217–220

    Google Scholar 

  • Goel G, Kumar A, Beniwal V, Raghav M, Puniya AK, Singh K (2011) Degradation of tannic acid and purification and characterization of tannase from Enterococcus faecalis. Int Biodeterior Biodegradation 65:1061–1065

    CAS  Google Scholar 

  • Hagerman AE (1992) Tannin-protein interactions. ACS Symp Ser 506:236–247

    CAS  Google Scholar 

  • Hamada A, Abou-Bakr, Malak A, El-Sahn, Amr A, El-Banna (2013) Screening of tannase-producing fungi isolated from tannin-rich sources. Int J Agric Food Res 2:1–12

    Google Scholar 

  • Haslam E (1996) Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod 59:205–215

    CAS  PubMed  Google Scholar 

  • Hassan SWM, Ghanem KM, El-Shahat AF, El-Says AMI (2018) Production of tannase by free and immobilized marine Aspergillus nomius under optimized culture conditions. RJPBCS 9:30–44

    CAS  Google Scholar 

  • He Q, Yao K, Sun D, Shi B (2007) Biodegradability of tannin-containing wastewater from leather industry. Biodegradation 18(4):465–472

    CAS  PubMed  Google Scholar 

  • Huang W, Ni J, Borthwick AGL (2005) Biosynthesis of valonia tannin hydrolase and hydrolysis of valonia tannin to ellagic acid by Aspergillus SHL 6. Process Biochem 40:245–1249

    Google Scholar 

  • Ire SF, Nwanguma AC (2020) Comparative evaluation on tannase production by Lasiodiplodia plurivora ACN-10 under submerged fermentation (SmF) and solid state fermentation (SSF). Asian J Biotechnol and Bioresource Technol 6:39–49. Article no. AJB2T.55864

    Google Scholar 

  • Iwamoto K, Tsuruta H, Nishitaini Y, Osawa R (2008) Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917T. Syst Appl Microbiol 31:269–277

    CAS  PubMed  Google Scholar 

  • Jamal P, Tompang MF, Alam MZ (2009) Optimization of media composition for the production of bioprotein from pineapple skins by liquid-state bioconversion. J Appl Sci 9:3104–3109

    CAS  Google Scholar 

  • Jana A, Halder SK, Banerjee A, Paul T, Pati BR, Mondal KC, Mohapatra PKD (2014) Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: a molecular advancement. Bioresour Technol 157:327–340

    CAS  PubMed  Google Scholar 

  • Jiménez N, Barcenilla JM, de Felipe FL, de las Rivas B, Muñoz R (2014) Characterization of a bacterial tannase from Streptococcus gallolyticus UCN34 suitable for tannin biodegradation. Appl Microbiol Biotechnol 98:6329–6337

    PubMed  Google Scholar 

  • Jun C, Yoo M, Lee W, Kwak K, Bae M, Hwang W, Son D, Chai K (2007) Ester derivatives from tannase-treated prunioside and their anti-inflammatory activities. Bull Kor Chem Soc 28:73–76

    CAS  Google Scholar 

  • Kachouri S, Halaouli S, Lomascolo A, Asther M, Hamdi M (2005) Decolourization of black oxidized olive-mill wastewater by a new tannase-producing Aspergillus flavus strain isolated from soil. World J Microbiol Biotechnol 21:1465–1470

    CAS  Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (2002) Optimization of physicochemical parameters of gallic acid production by evolutionary operation-factorial design technique. Process Biochem 37:1395–1140

    CAS  Google Scholar 

  • Karak T, Bhagat RM (2010) Trace elements in tea leaves, made tea and tea infusion: a review. Food Res Int 43:2234–2252

    CAS  Google Scholar 

  • Kasieczka-Burnecka M, Kuc, Kalinowska KH, Knap M, Turkiewicz M (2007) Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Appl Microbiol Biotechnol 77:77–89

    CAS  PubMed  Google Scholar 

  • Khanbabaee K, van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18:641–649

    CAS  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kumar RA, Gunasekaran P, Lakshmanan M (1999) Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent. J Basic Microbiol Int J Biochem Physiol Genet Morphol Ecol Microorg 39(3):161–168

    CAS  Google Scholar 

  • Kumar R, Sharma J, Singh R (2007) Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiol Res 162:384–390

    CAS  PubMed  Google Scholar 

  • Kumar SS, Sreekumar R, Sabu A (2019) Tannase and its applications in food processing. In: Parameswaran B, Varjani S, Raveendran S (eds) Green bio-processes. Energy, environment, and sustainability. Springer, Singapore

    Google Scholar 

  • Kuppusamy M, Thangavelu V, Kumar A, Chockalingam (2015) Kinetics and modeling of tannase production using Aspergillus foetidus in batch fermentation. Int J Pharm Pharm Sci 7:64–67

    CAS  Google Scholar 

  • Lal D, Divya Shrivastava D, Verma HN, Gardne JJ (2012) Production of tannin acyl hydrolase (E.C. 3.1.1.20) from Aspergillus niger isolated from bark of Acacia nilotica. J Microbiol Biotechnol Res 4:566–572

    Google Scholar 

  • Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44:215–260

    CAS  PubMed  Google Scholar 

  • Lenin B, Lokeswari N, Reddy D (2015) Separation and optimization of phenolic component from Anacardium occidentales testa by solvent extraction method. World J Pharm Res 4:870–874

    Google Scholar 

  • Lewis JA, Starkey RL (1969) Decomposition of plant tannins by some soil microorganisms. Soil Sci 107(4):235–241

    CAS  Google Scholar 

  • Li J, Xiao Q, Huang Y, Ni H, Wu C, Xiao A (2017) Tannase application in secondary enzymatic processing of inferior Tieguanyin oolong tea. Electron J Biotechnol 28:87–94

    CAS  Google Scholar 

  • Liu TPSL, Porto TS, Moreira KA, Takaki GMC, Brandão-Costa R, Herculano PN et al (2016) Tannase production by Aspergillus spp. UCP1284 using cashew bagasse under solid state fermentation. Afr J Microbiol Res 10(16):565–571

    CAS  Google Scholar 

  • Lu MJ, Chen C (2007) Enzymatic tannase treatment of green tea increases in vitro inhibitory activity against N-nitrosation of dimethylamine. Process Biochem 42:1285–1290

    CAS  Google Scholar 

  • Lu MJ, Chen C (2008) Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Res Int 41:130–137

    CAS  Google Scholar 

  • Lu MJ, Chu SC, Yan L, Chen C (2009) Effect of tannase treatment on protein-tannin aggregation and sensory attributes of green tea infusion. LWT—Food Sci Technol 42:338–342

    CAS  Google Scholar 

  • Łuczaj W, Skrzydlewska E (2005) Antioxidative properties of black tea. Prev Med 40(6):910–918

    PubMed  Google Scholar 

  • Madhavakrishna W, Bose S, Nayudamma Y (1960) Estimation of tannase and certain oxidizing enzymes in Indian vegetable tanstuffs. Bull Cent Leath Res Inst 7(1):11

    Google Scholar 

  • Mahapatra S, Banerjee D (2009) Extracellular tannase production by endophytic hyalopus sp. J Appl Microbiol 55:255–259

    CAS  Google Scholar 

  • Mahendran B, Raman N, Kim D (2005) Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase. Appl Microbiol Biotechnol 70:445–451

    Google Scholar 

  • Manjit YA, Aggarwal NK, Kumar K, Kumar A (2008) Tannase production by Aspergillus fumigatus MA under solid-state fermentation. World J Microbiol Biotechnol 24:3023–3030

    CAS  Google Scholar 

  • Marco MG, Luis VR, Erika LR, Jacqueline R, Mario ACH, Raúl R, Juan C, Cristóbal NA (2009) Anovel tannase from the xerophilic fungus Aspergillus niger GH1. J Microbiol Biotechnol 1:1–10

    Google Scholar 

  • Mondal KC, Pati BR (2000) Studies on the extracellular tannase from newly isolated Bacillus licheniformis KBR 6. J Basic Microbiol 40:223–232

    CAS  PubMed  Google Scholar 

  • Mondal KC, Samanta S, Giri S, Pati BR (2001) Distribution of tannic acid degrading microorganisms in the soil and comparative study of tannase from two fungal strains. Acta Microbiol Pol 50:75–82

    CAS  PubMed  Google Scholar 

  • Mosleh H, Naghiha A, Keshtkaran AN, Khajavi M (2014) Isolation and identification of tannin-degrading bacteria from native sheep and goat feces in Kohgiloye and Boyer-Ahmad Province. Int J Adv Biol Biomed Res 2:176–180

    CAS  Google Scholar 

  • Mukherjee G, Banerjee R (2003) Production of gallic acid. Biotechnological routes (Part 1). Chim Oggi 21:59–62

    CAS  Google Scholar 

  • Mukherjee G, Banerjee R (2006) Effects of temperature, pH and additives on the activity of tannase produced by a co-culture of Rhizopus oryzae and Aspergillus foetidus. World J Microbiol Biotechnol 22:207–212

    CAS  Google Scholar 

  • Murugan K, Al-Sohaibani SA (2010) Biocompatible removal of tannin and associated color from tannery effluent using the biomass and tannin acyl hydrolase (E.C.3.1.1.20) enzymes of mango industry solid waste isolate Aspergillus candidus MTTC 9628. Res J Microbiol 5:262–271

    CAS  Google Scholar 

  • Murugan K, Saravanababu S, Arunachalam M (2007) Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF process. Bioresour Technol 98:946–949

    CAS  PubMed  Google Scholar 

  • Nalan YS, Merih K (2009) Isolation of gallic acid producing microorganisms and their use in the production of gallic acid from gall nuts and sumac. Afr J Biotechnol 8:1110–1115, 20

    Google Scholar 

  • Neethu RS, Pradeep S (2018) Isolation and characterization of potential tannase producing fungi from mangroves and tanneries. Indian J Appl Microbiol 21:1–13

    Google Scholar 

  • Nishitani Y, Sasaki E, Fujisawa T, Osawa R (2004) Genotypic analyses of lactobacilli with a range of tannase activities isolated from human feces and fermented foods. Syst Appl Microbiol 27:109–117

    CAS  PubMed  Google Scholar 

  • Nuero OM, Reyes F (2002) Enzymes for animal feeding from Penicillium chrysogenum mycelial wastes from penicillin manufacture. Lett Appl Microbiol 34(6):413–416

    CAS  PubMed  Google Scholar 

  • Okuda T, Ito H (2011) Tannins of constant structure in medicinal and food plants-hydrolyzable tannins and polyphenols related to tannins. Molecules 16(3):2191–2217

    CAS  PubMed Central  Google Scholar 

  • Ordonez RM, Colombo I, Alberto MR, Isla MI (2011) Production of tannase from wood-degrading fungus using as substrate plant residues: purification and characterization. World J Microbiol Biotechnol 27:2325–2333

    CAS  Google Scholar 

  • Ow YY, Stupans I (2003) Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes. Curr Drug Metab 4:241–248

    CAS  PubMed  Google Scholar 

  • Panno L, Voyron S, Anastasi A, MussatSartor R, Varese GC (2011) Biodiversity of marine fungi associated with the seagrass Posidonia oceanica: an ecological and biotechnological perspective. Biol Mar Mediterr 18:85–88

    Google Scholar 

  • Panno L, Bruno M, Voyron S, Anastasi A, Gnavi G, Miserere L et al (2013) Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnol 30:685–694

    CAS  Google Scholar 

  • Paranthaman R, Vidyalakshmi R, Murugesh S, Singaravadivel K (2009) Effects of fungal coculture for the biosynthesis of tannase and gallic acid from grape wastes under solid state fermentation. Glob J Biotechnol Biochem 4:29–36

    CAS  Google Scholar 

  • Pepi M, Lampariello LR, Altieri R, Esposito A, Perra G, Renzi M et al (2010) Tannic acid degradation by bacterial strains Serratia spp. and Pantoea sp. isolated from olive mill waste mixtures. Int Biodeterior Biodegradation 64(1):73–80

    CAS  Google Scholar 

  • Prigione V, Spina F, Tigini V, Giovando S, Varese GC (2018) Biotransformation of industrial tannins by filamentous fungi. Appl Microbiol Biotechnol 102:10361–10375

    CAS  PubMed  Google Scholar 

  • Purohit JS, Dutta JR, Nanda RK, Banerjee R (2006) Strain improvement for tannase production from co-culture of Aspergillus foetidus and Rhizopus oryzae. Bioresour Technol 97:795–801

    CAS  PubMed  Google Scholar 

  • Raghuwanshi S, Dutt K, Gupta P, Misra S, Saxena RK (2011) Bacillus sphaericus: the highest bacterial tannase producer with potential for gallic acid synthesis. J Biosci Bioeng 111(6):635–640

    CAS  PubMed  Google Scholar 

  • Rana N, Bhat T (2005) Effect of fermentation system on the production and properties of tannase of Aspergillus niger van Tieghem MTCC 2425. J Gen Appl Microbiol 51:203–212

    CAS  PubMed  Google Scholar 

  • Rana G, Katerji N, Introna M, Hammami A (2004) Microclimate and plant water relationship of the “overhead” table grape vineyard managed with three different covering techniques. Sci Hortic 102:105–120

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y

    Article  CAS  PubMed  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Reges de Sena A, Santos ACB, Gouveia MJ, Mello MRFM, Leite TCC et al (2014) Production of tannase by Pestalotiopsis guepinii. Food Technol Biotechnol 52(4):459–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez H, de las Rivas B, Gómez-Cordovés C, Muñoz R (2008) Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. Int J Food Microbiol 121:92–98

    PubMed  Google Scholar 

  • Rodriguez-Duran VL, Valdivia-Urdiales B, Contreras-Esquivel JC, Rodriguez-Herrera R, Aguilar CN (2011) Novel strategies for upstream and downstream processing of tannin acyl hydrolase. Enzyme Res 2011:1–20

    Google Scholar 

  • Rout S, Banerjee R (2006) Production of tannase under MSSF and its application in fruit juice debittering. Indian J Biotechnol 5:346–350

    CAS  Google Scholar 

  • Sabu A, Pandey A, Daud MJ, Szakacs G (2005) Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour Technol 96:1223–1228

    CAS  PubMed  Google Scholar 

  • Sabu A, Augur C, Swati C, Pandey A (2006) Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation. Process Biochem 41(3):575–580

    CAS  Google Scholar 

  • Sandai D, Ibrahim D, Kassim J (2012) Calcium alginate entrapped cells of Penicillium digitatum FETL DS1 for the improvement of tannase production. BTAIJ 6:27–34

    CAS  Google Scholar 

  • Sariozlu NY, Kivanc M (2009) Isolation of gallic acid producing microorganisms and their use in the production of gallic acid from gall nuts and sumac. Afr J Biotechnol 8:1110–1115

    CAS  Google Scholar 

  • Saxena S, Saxena RK (2004) Statistical optimization of tannase production from Penicillium variable using fruits (chebulic myrobalan) of Terminalia chebula. Biotechnol Appl Biochem 39:99–106

    CAS  PubMed  Google Scholar 

  • Selwal MK, Yadav A, Selwal KK, Aggarwal NK, Gupta R, Gautam SK (2010) Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa IIIB 8914 under submerged fermentation. World J Microbiol Biotechnol 26:599–605

    CAS  Google Scholar 

  • Serrano J, Puupponen-Pimiä R, Dauer A, Aura AM, Saura-Calixto F (2009) Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53:S310–S329

    PubMed  Google Scholar 

  • Shajitha G, Nisha MK (2018) Tannase production from agro-wastes as substrate by Trichoderma viride. Int J Curr Res Life Sci 07(05):1994–1997

    Google Scholar 

  • Sharma KP, John PJ (2011) Purification and characterization of tannase and tannase gene from Enterobacter sp. Process Biochem 46(1):240–244

    CAS  Google Scholar 

  • Sharma S, Bhat TK, Dawra RK (2000) A spectrophotometric method for assay of tannase using rhodamine. Anal Biochem 279:85–89

    CAS  PubMed  Google Scholar 

  • Shrivastava A, Kar K (2009) Characterization and application of tannase produced by Aspergillus niger ITCC 6514.07 on pomegranate rind. Brazil J Microbiol 40:782–789

    Google Scholar 

  • Sittig M (1988) Trimethoprim. In: Sittig M (ed) Pharmaceutical manufacturing encylopedia. Noyes Publication, New Jersey, pp 282–284

    Google Scholar 

  • Skene IK, Brooker JD (1995) Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium. Anaerobe 1:321–327

    CAS  PubMed  Google Scholar 

  • Srivastava A, Kar R (2009) Characterization and application of tannase produced by Aspergillus niger ITCC 6514.07 on pomegranate rind. Braz J Microbiol 40:782–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Kar R (2010) Application of immobilized tannase from Aspergillus niger for the removal of tannin from myrobalan juice. Indian J Microbiol 50:46–51

    PubMed  PubMed Central  Google Scholar 

  • Su E, Xia T, Gao L, Dai Q, Zhang Z (2009) Immobilization and characterization of tannase and its haze-removing. Food Sci Technol Int 15:545–552

    CAS  Google Scholar 

  • Tieghem P (1867) Sur la fermentation gallique. CR Acad Sci Paris 65:1091–1094

    Google Scholar 

  • Urbano G, Lopez-Jurado M, Porres JM (2007) Effect of treatment with α-galactosidase, tannase or a cell-wall degrading enzyme complex on the nutritive utilisation of protein and carbohydrates from pea (Pisum sativum L.) flour. J Sci Food Agric 87:1356–1363

    CAS  Google Scholar 

  • Van de Lagemaat J, Pyle DL (2005) Modelling the uptake and growth kinetics of Penicillium glabrum in a tannic acid-containing solid state fermentation for tannase production. Process Biochem 40:1773–1782

    Google Scholar 

  • Vattem DA, Shetty K (2002) Solid-state production of phenolic antioxidants from cranberry pomace by Rhizopus oligosporum. Food Biotechnol 16:189–210

    CAS  Google Scholar 

  • Vattem DA, Shetty K (2003) Ellagic acid production and phenolic antioxidants activity in cranberry pomace (Vaccinium macrocarpo) mediated by Lentinus edodes using a solid-state system. Process Biochem 39:367–379

    CAS  Google Scholar 

  • Venditti E, Bacchetti T, Tiano L, Carloni P, Greci L, Damiani E (2010) Hot vs. cold water steeping of different teas: do they affect antioxidant activity? Food Chem 119(4):1597–1604

    CAS  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Microbial interactions and agro-ecological impacts, vol 2. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Vivas N, Laguerrre M, Pianet de Boissel I, Vivas de Gaulejac N, Nonier MF (2004) Conformational interpretation of vascalagin and castalagin physicochemical properties. J Agric Food Chem 52:2073–2078

    CAS  PubMed  Google Scholar 

  • Weetall H (1985) Enzymatic synthesis of gallic acid esters. Appl Biochem Biotechnol 11(1):25–28

    CAS  Google Scholar 

  • Yadav AN (2021) Soil microbiomes for sustainable agriculture, Functional annotation, vol 2. Springer, Cham

    Google Scholar 

  • Yadav AN, Kour D, Rana KL, Yadav N, Singh B, Chauhan VS et al (2019) Metabolic engineering to synthetic biology of secondary metabolites production. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 279–320. https://doi.org/10.1016/B978-0-444-63504-4.00020-7

    Chapter  Google Scholar 

  • Yu XW, Li YQ (2008) Expression of Aspergillus oryzae tannase in Pichia pastoris and its application in the synthesis of propyl gallate in organic solvent. Food Technol nd Biotechnol 46:80–85

    CAS  Google Scholar 

  • Yu X, Li Y, Wang C, Wu D (2004) Immobilization of Aspergillus niger tannase by microencapsulation and its kinetic characteristics. Biotechnol Appl Biochem 40:151–155

    CAS  PubMed  Google Scholar 

  • Zakipour-Molkabadi E, Hamidi-Esfahani Z, Sahari MA, Azizi MH (2013) A new native source of Tannase producer, Penicillium sp. EZ-ZH190: characterization of the enzyme. Iran J Biotechnol 11(4):244–250

    Google Scholar 

  • Zhang YN, Yin JF, Chen JX, Wang F, Du QZ, Jiang YW, Xu YQ (2016) Improving the sweet aftertaste of green tea infusion with tannase. Food Chem 192:470–476

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gezaf, S.A., Abo Nouh, F.A., Abdel-Azeem, A.M. (2021). Fungal Communities from Different Habitats for Tannins in Industry. In: Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Sharma, M. (eds) Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-85603-8_4

Download citation

Publish with us

Policies and ethics