Skip to main content

Verification of Co-simulation Algorithms Subject to Algebraic Loops and Adaptive Steps

  • Conference paper
  • First Online:
Formal Methods for Industrial Critical Systems (FMICS 2021)

Abstract

Simulation-based analyses of cyber-physical systems are increasingly vital. Co-simulation is one such technique that enables the coupling of specialized simulation tools through an orchestration algorithm. The orchestrator dictates how each simulation tool should simulate its corresponding subsystem. Obtaining correct simulation results requires an implementation-aware orchestration algorithm tailored to the specific scenario, without the orchestrator knowing each simulation tool’s implementation. Such an algorithm should stabilize algebraic loops, perform time step negotiation, and adhere to each simulation tool’s implementation. This paper describes an approach and implementation to prove that a given orchestration algorithm respects all contracts related to the simulation units’ implementation. The approach has been applied to an industrial case study and other complex scenarios. The tool and results are available online.

We are grateful to the Poul Due Jensen Foundation, which has supported the establishment of a new Centre for Digital Twin Technology at Aarhus University. Maurizio Palmieri is also grateful to the Italian Ministry of Education and Research (MIUR) in the framework of the CrossLab project (Department of Excellence).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/INTO-CPS-Association/Scenario-Verifier.

  2. 2.

    https://github.com/SimplisticCode/Co-simulation-Verifier.

  3. 3.

    https://github.com/SimplisticCode/Co-simulation-Verifier/blob/master/Scenario/examples/industrial_casestudy.conf.

References

  1. Amálio, N., Payne, R., Cavalcanti, A., Woodcock, J.: Checking SysML models for co-simulation. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 450–465. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47846-3_28

    Chapter  Google Scholar 

  2. Arnold, M., Clauß, C., Schierz, T.: Error analysis and error estimates for co-simulation in FMI for model exchange and co-simulation v2.0. In: Schöps, S., Bartel, A., Günther, M., ter Maten, E.J.W., Müller, P.C. (eds.) Progress in Differential-Algebraic Equations. DEF, pp. 107–125. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44926-4_6

    Chapter  MATH  Google Scholar 

  3. Behrmann, G., et al.: UPPAAL 4.0. In: Third International Conference on Quantitative Evaluation of Systems (QEST 2006), pp. 125–126 (2006)

    Google Scholar 

  4. Blockwitz, T., et al.: Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: Proceedings of the 9th International MODELICA Conference, September 3-5, 2012, Munich, Germany. 76, pp. 173–184. Linköping University Electronic Press (2012). https://doi.org/10.3384/ecp12076173

  5. Broman, D., et al.: Determinate composition of FMUs for co-simulation. In: Eleventh ACM International Conference on Embedded Software. IEEE Press, Piscataway (2013). Article no. 2

    Google Scholar 

  6. Cavalcanti, A., Woodcock, J., Amálio, N.: Behavioural models for FMI co-simulations. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 255–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_15

    Chapter  Google Scholar 

  7. FMI: Functional mock-up interface tools (2014). https://fmi-standard.org/tools/

  8. Gomes, C., Broman, D., Vangheluwe, H., Thule, C., Larsen, P.G.: Co-simulation: a survey. ACM Comput. Surv. 51(3), 49–49 (2018)

    Article  Google Scholar 

  9. Gomes, C., Lucio, L., Vangheluwe, H.: Semantics of co-simulation algorithms with simulator contracts. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), pp. 784–789. IEEE (2019)

    Google Scholar 

  10. Gomes, C., et al.: Semantic adaptation for FMI co-simulation with hierarchical simulators. SIMULATION 95(3), 241–269 (2019)

    Article  Google Scholar 

  11. Gomes, C., et al.: HintCO - hint-based configuration of co-simulations. In: Proceedings of the 9th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 57–68. Scitepress - Science and Technology Publications (2019)

    Google Scholar 

  12. Gomes, C., Thule, C., Lausdahl, K., Larsen, P.G., Vangheluwe, H.: Demo: stabilization technique in INTO-CPS. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 45–51. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_4

    Chapter  Google Scholar 

  13. Gomes, C., Thule, C., Lúcio, L., Vangheluwe, H., Larsen, P.G.: Generation of co-simulation algorithms subject to simulator contracts. In: Camara, J., Steffen, M. (eds.) SEFM 2019. LNCS, vol. 12226, pp. 34–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57506-9_4

    Chapter  Google Scholar 

  14. Hansen, S.T., Gomes, C., van de Pol, J., Larsen, P.G.: Synthesizing co-simulation algorithms with step negotiation and algebraic loop handling (2021, to appear)

    Google Scholar 

  15. Inci, E.O., et al.: The effect and selection of solution sequence in co-simulation. In: The Annual Modeling and Simulation Conference, Virginia, USA (2021, to appear)

    Google Scholar 

  16. Jensen, P.G., Larsen, K.G., Legay, A., Nyman, U.: Integrating tools: co-simulation in UPPAAL using FMI-FMU. In: 2017 22nd International Conference on Engineering of Complex Computer Systems (ICECCS), pp. 11–19. IEEE (2017)

    Google Scholar 

  17. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn. Syst. 6(2), 93–113 (2000)

    Article  Google Scholar 

  18. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pp. 363–369 (2008)

    Google Scholar 

  19. Oakes, B.J., Gomes, C., Holzinger, F.R., Benedikt, M., Denil, J., Vangheluwe, H.: Hint-based configuration of co-simulations with algebraic loops. In: Obaidat, M.S., Ören, T., Szczerbicka, H. (eds.) SIMULTECH 2019. AISC, vol. 1260, pp. 1–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55867-3_1

    Chapter  Google Scholar 

  20. Palmieri, M., Bernardeschi, C., Masci, P.: A framework for FMI-based co-simulation of human-machine interfaces. Softw. Syst. Model. 19(3), 601–623 (2020). https://doi.org/10.1007/s10270-019-00754-9

    Article  Google Scholar 

  21. Schweizer, B., Li, P., Lu, D.: Explicit and implicit cosimulation methods: stability and convergence analysis for different solver coupling approaches. J. Comput. Nonlinear Dyn. 10(5), 051007 (2015)

    Article  Google Scholar 

  22. Thule, C., Gomes, C., Deantoni, J., Larsen, P.G., Brauer, J., Vangheluwe, H.: Towards the verification of hybrid co-simulation algorithms. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 5–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_1

    Chapter  Google Scholar 

  23. Zeyda, F., Ouy, J., Foster, S., Cavalcanti, A.: Formalising cosimulation models. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 453–468. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_31

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Stefan Hallerstede, Tomas Kulik, Jalil Boudjadar, and the reviewers for providing valuable input to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Thrane Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hansen, S.T., Gomes, C., Palmieri, M., Thule, C., van de Pol, J., Woodcock, J. (2021). Verification of Co-simulation Algorithms Subject to Algebraic Loops and Adaptive Steps. In: Lluch Lafuente, A., Mavridou, A. (eds) Formal Methods for Industrial Critical Systems. FMICS 2021. Lecture Notes in Computer Science(), vol 12863. Springer, Cham. https://doi.org/10.1007/978-3-030-85248-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85248-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85247-4

  • Online ISBN: 978-3-030-85248-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics