Skip to main content

Robust Optimization in Short-Term Power System Operations

  • Chapter
  • First Online:
Robust Optimization in Electric Energy Systems

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 313))

  • 1327 Accesses

Abstract

In this chapter, we study the applications of robust optimization in day-ahead and real-time operation of power systems with significant wind and solar generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertsimas, D., Litvinov, E., Sun, X. A., Zhao, J., & Zheng, T. (2013). Adaptive robust optimization for the security constrained unit commitment problem. IEEE Transactions on Power Systems, 28(1), 52–63.

    Article  Google Scholar 

  2. Jiang, R., Wang, J., & Guan, Y. (2012). Robust unit commitment with wind power and pumped storage hydro. IEEE Transactions on Power Systems, 27(2), 800–810.

    Article  Google Scholar 

  3. Zhao, L., & Zeng, B. (2012). Robust unit commitment problem with demand response and wind energy. IEEE Power and Energy Society General Meeting

    Google Scholar 

  4. Zeng, B., & Zhao, L. (2013). Solving two-stage robust optimization problems using a column-and-constraint generation method. Operations Research Letters, 41(5), 457–461.

    Article  Google Scholar 

  5. ISO New England. Do Not Exceed Dispatch Project. https://www.iso-ne.com/participate/support/participant-readiness-outlook/do-not-exceed-dispatch.

  6. Lorca, A., Sun, X. A., Litvinov, E., & Zheng, T. (2016). Multistage adaptive robust optimization for the unit commitment problem. Operations Research, 64(1), 32–51.

    Article  Google Scholar 

  7. Lorca, A., & Sun, X. A. (2015). Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. IEEE Transactions on Power Systems, 30(4), 1702–1713.

    Article  Google Scholar 

  8. Lorca, A., & Sun, X. A. (2017). Multistage robust unit commitment with dynamic uncertainty sets and energy storage. IEEE Transactions on Power Systems, 32(3), 1678–1688.

    Article  Google Scholar 

  9. Lorca, A., & Sun, X. A. (2018). Adaptive robust multi-period AC optimal power flow. IEEE Transactions on Power Systems, 33(2), 1993–2003.

    Article  Google Scholar 

  10. Anjos, M., & Conejo, A. (2017). Unit commitment in electric energy systems. Foundations and Trends in Electric Energy Systems, 1(4), 220–310.

    Article  Google Scholar 

  11. Ela, E., & Helman, U. (2016). Wholesale electricity market design initiative in the United States: Survey and research needs. Electric Power Research Institute Technical Update

    Google Scholar 

  12. Cramton, P. (2017). Electricity market design. Oxford Review of Economic Policy, 33(4), 589–612.

    Article  Google Scholar 

  13. Kirschen, D., & Strbac, G. (2018). Fundamentals of power system economics. Hoboken: John Wiley & Sons.

    Google Scholar 

  14. Burke, P. J., & Abayasekara, A. (2018). The price elasticity of electricity demand in the United States: a three-dimensional analysis. The Energy Journal, 39(2), 123–145.

    Article  Google Scholar 

  15. Morison, K., Wang, L., & Kundur, P. (2004). Power system security assessment. IEEE Power and Energy Magazine, 2(5), 30–39.

    Article  Google Scholar 

  16. CAISO. CAISO market processes and products. http://www.caiso.com/market/Pages/MarketProcesses.aspx.

  17. Federal Energy Regulatory Commission (FERC) Operator initiated commitment in RTO and ISO markets. Price formation in organized wholesale electricity markets. Docket AD14-14-000, http://www.ferc.gov/legal/staff-reports/2014/AD14-14-operator-actions.pdf.

  18. Navid, N., & Rosenwald, G. (2012). Market solutions for managing ramp flexibility with high penetration of renewable resource. IEEE Transactions on Sustainable Energy 3(4), 784–790.

    Article  Google Scholar 

  19. National Renewable Energy Laboratory (NREL). Transmission grid integration—Western wind data set. http://www.nrel.gov/electricity/transmission/wind_integration_dataset.html.

  20. Potter, C. W., Lew, D., McCaa, J., Cheng, S. Eichelberger, S., & Grimit, E. (2008). Creating the data set for the western wind and solar integration study (USA). Wind Energy, 32(4), 325–338.

    Google Scholar 

  21. Hamilton, J. D. (1994). Time series analysis (vol. 2). Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  22. General Electric Company. GE Energy 1.5 MW Wind Turbine. https://www.ge.com/in/wind-energy/1.5-MW-wind-turbine.

  23. RERL wind data. Center for energy efficiency and renewable energy, University of Massachusetts Amherst, http://www.ceere.org/rerl/publications/resource_data/index.html.

  24. Kocuk, B., Dey, S., & Sun, X. A. (2016). Strong SOCP relaxations for the AC optimal power flow problem. Operations Research, 64(6), 1177–1565.

    Article  Google Scholar 

  25. Gómez-Expósito, A., & Romero-Ramos, E. (1999). Reliable load flow technique for radial distribution networks. IEEE Transactions on Power Systems, 14(3), 1063–1069.

    Article  Google Scholar 

  26. Jabr, R. A. (2008). Optimal power flow using an extended conic quadratic formulation. IEEE Transactions on Power Systems, 23(3), 1000–1008.

    Article  Google Scholar 

  27. Bai, X., Wei, H., Fujisawa, K., & Wang, Y. (2008). Semidefinite programming for optimal power flow problems. International Journal of Electrical Power & Energy Systems, 30(6), 383–392.

    Article  Google Scholar 

  28. Sun, X. A. (2017). Recent development on robust optimization in electric power systems operations. Integration of Large Scale Renewable Energy into Bulk Power Systems: From Planning to Operation, Springer International Publishing.

    Google Scholar 

  29. Zimmerman, R. D., Murillo-Sánchez, C. E., & Thomas, R. J. (2011). MATPOWER: Steady-state operation, planning and analysis tools for power systems research and education. IEEE Transactions on Power Systems, 26(1), 12–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, X.A., Conejo, A.J. (2021). Robust Optimization in Short-Term Power System Operations. In: Robust Optimization in Electric Energy Systems. International Series in Operations Research & Management Science, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-030-85128-6_6

Download citation

Publish with us

Policies and ethics