Skip to main content

Biodegradable Textiles, Recycling, and Sustainability Achievement

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Textile fiber output has increased to about 100 million metric tons, with natural fibers, synthetics, and other regenerated fibers being the most common types. Because of the rising industrialization in the twentieth century, there was unprecedented growth in the emphasis on occupational safety. The result was broadened in the difficulty of legislation, regulation, and environmental awareness in the workplace. Biodegradable textiles refer to those fibers and/or fabrics decomposition naturally using bacteria and fungi. Chemicals percentage used in the textile materials life cycle largely determines the textiles biodegradability. The more chemicals used, the longer it takes for the fabric to biodegrade, causing environmental destruction. Numerous biodegradable textiles are based on their degradability degree, the time required to degrade completely, and ecological impact. This chapter reviews a scientific description of the biodegradation means in textile fibers, approaches, testing conditions, fibers biodegradation evaluation, the biodegradation mechanisms of several textile fibers, and their blends and composites, as well as sustainability achievement philosophy in textiles and clothing fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AATCC:

American Association of Textile Chemists and Colorists

ASTM:

American Society for Testing and Materials

DMDHEU:

Low formaldehyde dimethylol dihydroxy ethylene urea

DMUG:

Dimethylurea glyoxal

DOP:

Degree of polymerization

FTIR:

Infrared Spectroscopy

MMT:

million metric tons

PBI:

Polyfunctional blocked isocyanate crosslinker

PLA:

Poly (lactic acid)

SEM:

Scanning Electron Microscope

TOC:

Total organic carbon amount

XRD:

X-ray diffraction

References

  1. Connell K Y H and Kozar J M (2014) Roadmap to Sustainable Textiles and Clothing: Regulatory Aspects and Sustainability Standards of Textiles and the Clothing Supply Chain. Textile Science and Clothing Technology, Springer.

    Google Scholar 

  2. Boiten V J, Han S L-C, and Tyler D (2017) Circular Economy Stakeholder Perspectives: Textile Collection Strategies to Support Material Circularity, Resyntex.

    Google Scholar 

  3. Sandoval V P, Jaca C, and Ormazabal M (2018) Towards a consensus on the circular economy. Journal of Cleaner Production 179:605–615. https://doi.org/10.1016/j.jclepro.2017.12.224.

    Article  Google Scholar 

  4. Keßler L, Matlin S A, and Kümmerer K (2021) The Contribution of Material Circularity to Sustainability – Recycling and Reuse of Textiles. Journal of Current Opinion in Green and Sustainable Chemistry 32:100535. https://doi.org/10.1016/j.cogsc.2021.100535.

    Article  CAS  Google Scholar 

  5. López-Martínez S, Morales-Caselles C, Kadar J, and Rivas M L (2021) Overview of Global Status of Plastic Presence in Marine Vertebrates. Journal of Global Change Biology 27:728–737. https://doi.org/10.1111/gcb.15416.

    Article  CAS  Google Scholar 

  6. Aliotta L, Gigante V, Coltelli M B, Cinelli P, and Lazzeri A (2019) Evaluation of Mechanical and Interfacial Properties of Bio-Composites Based on Poly (Lactic Acid) With Natural Cellulose Fibers. International Journal of Molecular Sciences 20(4):960. https://doi.org/10.3390/ijms20040960.

    Article  CAS  Google Scholar 

  7. Lellis B, Fávaro-Polonio C Z, Pamphile J A, and Polonio J C (2019) Effects of Textile Dyes on Health and The Environment and Bioremediation Potential of Living Organisms. Journal of Biotechnology Research and Innovation 3(2):275–290. https://doi.org/10.1016/j.biori.2019.09.001.

    Article  Google Scholar 

  8. Blackburn R S(2006) Biodegradable and sustainable fibers, Woodhead Publishing Series in Textiles.

    Google Scholar 

  9. Jambeck J R et al. (2015) Plastic Waste Inputs from Land into The Ocean. Science 347 (6223): 768–771. https://doi.org/10.1126/science.1260352.

    Article  CAS  Google Scholar 

  10. Scheirs J (1998) Polymer Recycling: Science, Technology and Applications Wiley series in polymer science.

    Google Scholar 

  11. Hahladakis J N, Velis C A, Weber R, Iacovidou E, and Purnell P (2018) An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact During their Use, Disposal, and Recycling. Journal of Hazardous Materials 344:179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014.

    Article  CAS  Google Scholar 

  12. Hammer J, Kraak M H S, and Parsons J R (2012) Plastics in the Marine Environment: The Dark Side of a Modern Gift. Reviews of Environmental Contamination and Toxicology. Springer, New York 1–44. https://doi.org/10.1007/978-1-4614-3414-6_1.

    Book  Google Scholar 

  13. Ellen MacArthur Foundation (2016) The New Plastics Economy: Rethinking the future of plastics,” Ellen MacArthur Found.

    Google Scholar 

  14. Elias S A (2017) Plastics in the Ocean, 1–5(12). Elsevier Inc.

    Google Scholar 

  15. Prambauer M, Wendeler C, Weitzenböck J, and Burgstaller C (2019) Biodegradable Geotextiles – An Overview of Existing and Potential Materials, Geotextiles and Geomembranes 47(1): 48–59. https://doi.org/10.1016/j.geotexmem.2018.09.006.

    Article  Google Scholar 

  16. Erickson B (1999) United States Environmental Protection Agency, Today’s Chem. Work. https://doi.org/10.1201/9781003075660-2.

  17. National Research Council (1993) In Situ Bioremediation: When Does it Work? Washington, DC: The National Academies Press. https://doi.org/10.5860/choice.32-0327.

    Book  Google Scholar 

  18. Alexander M (1999) Biodegradation and Bioremediation, second ed. Acad. Press. San Diego, CA, USA, Springer.

    Google Scholar 

  19. Bachmann R T, Johnson A C, and Edyvean R G J (2014) Biotechnology in the Petroleum Industry: An Overview. International Biodeterioration and Biodegradation 86: 225–237. https://doi.org/10.1016/j.ibiod.2013.09.011.

    Article  CAS  Google Scholar 

  20. Doi Y and Fukuda K (1994) Biodegradable Plastics and Polymers. Journal of Pesticide Science 12(11). https://doi.org/10.1584/jpestics.19.S11.

  21. National Research Council (1995) Alternatives for Groundwater Cleanup. Choice Reviews Online. https://doi.org/10.5860/choice.32-5674.

  22. Rana S, Pichandi S, Parveen S, and Fangueiro R (2014) Biodegradation Studies of Textiles and Clothing Products, Textile Science and Clothing Technology book series, Springer, Singapore.

    Google Scholar 

  23. Eichhorn S, Hearle J W S, Jaffe, M, and Kikutani, T (2009) Handbook of Textile Fiber Structure: Volume 1: Fundamentals and Manufactured Polymer Fibers.

    Google Scholar 

  24. Rasheed A (2020) Classification of Technical Textiles. In Fibers for Technical Textiles (pp. 49–64). Springer, Cham.

    Chapter  Google Scholar 

  25. Akil H, Omar M F, Mazuki A M, Safiee S Z A M, Ishak Z M, and Bakar A A (2011) Kenaf fiber reinforced composites: A review. Materials & Design, 32(8-9): 4107–4121.

    Article  CAS  Google Scholar 

  26. Murthy H S (2018) Introduction to Textile Fibers. CRC Press.

    Google Scholar 

  27. Lewin M (2006) Handbook of fiber chemistry. Crc press.

    Google Scholar 

  28. Hu X P and Hsieh Y L (1996) Crystalline Structure of Developing Cotton Fibers. Journal of Polymer Science Part B: Polymer Physics, 34(8): 1451–1459.

    Article  CAS  Google Scholar 

  29. Cook J G (2001) Handbook of textile fibers. Volume I. Manmade fibers. Volume 2. Natural Fibers.

    Google Scholar 

  30. Muthu S S (Ed.) (2017) Sustainable Fibers and Textiles. Woodhead Publishing.

    Google Scholar 

  31. Cook J G (1984) Handbook of Textile Fibers: Natural Fibers. Elsevier.

    Google Scholar 

  32. Chand N and Fahim M (2020) Tribology of Natural Fiber Polymer Composites. Woodhead Publishing.

    Google Scholar 

  33. Salmon-Minotte, J and Franck R R (2005) Flax. In Bast and other plant fibers Woodhead Publishing. 94–175.

    Google Scholar 

  34. Ugbolue S C (2005) Fiber and Yarn Identification. Chemical Testing of Textiles 96: 1.

    Google Scholar 

  35. Bunsell A R (Ed.) (2018) Handbook of Properties of Textile and Technical Fibers. Woodhead Publishing.

    Google Scholar 

  36. Li Z, Wang X and Wang L (2006) Properties of Hemp Fiber Reinforced Concrete Composites. Composites part A: Applied Science and Manufacturing, 37(3): 497–505.

    Article  CAS  Google Scholar 

  37. Dhakal H N and Zhang Z (2015) The Use of Hemp Fibers as Reinforcements in Composites. In Biofiber Reinforcements in Composite Materials Woodhead Publishing: pp. 86–103.

    Google Scholar 

  38. Franck R R (Ed.) (2005) Bast and other Plant Fibers (Vol. 39). Crc Press.

    Google Scholar 

  39. Houck M M (Ed.) (2009) Identification of textile fibers.

    Google Scholar 

  40. Reddy S R T, Prasad A R, and Ramanaiah K (2021) Tensile and Flexural Properties of Biodegradable Jute Fiber Reinforced Poly Lactic Acid Composites. Materials Today: Proceedings, 44: 917–921.

    Google Scholar 

  41. Sharma H S S (1987) Studies on Chemical and Enzyme Retting of Flax on a Semi-Industrial Scale and Analysis of the Effluents for their Physico-Chemical Components. International Biodeterioration 23(6): 329–342.

    Article  CAS  Google Scholar 

  42. Nam S and Netravali A N (2006) Green Composites I. Physical Properties of Ramie Fibers for Environment-Friendly Green Composites. Fibers and Polymers, 7(4): 372–379.

    Article  CAS  Google Scholar 

  43. Hearle J W (2007) Protein Fibers: Structural Mechanics and Future Opportunities. Journal of materials science, 42(19):8010–8019.

    Article  CAS  Google Scholar 

  44. Anuar N I S, Zakaria S, Gan S, Chia C H, Wang C, and Harun J (2019) Comparison of the Morphological and Mechanical Properties of Oil Palm EFB Fibers and Kenaf Fibers in Nonwoven Reinforced Composites. Industrial Crops and Products 127: 55–65.

    Article  CAS  Google Scholar 

  45. Mohanty A K, Misra M, and Drzal L T (Eds.) (2005) Natural Fibers, Biopolymers, and Biocomposites. CRC press.

    Google Scholar 

  46. Joseph P V, Joseph K, and Thomas S (1999). Effect of Processing Variables on the Mechanical Properties of Sisal-Fiber-Reinforced Polypropylene Composites. Composites Science and Technology 59(11): 1625–1640.

    Article  CAS  Google Scholar 

  47. Sfiligoj Smole M, Hribernik S, Stana Kleinschek, K, and Kreže, T (2013) Plant Fibers for Textile and Technical Applications. Advances in Agrophysical Research: 369–398.

    Google Scholar 

  48. Muthu S S, and Gardetti M A (Eds.) (2020) Sustainability in the Textile and Apparel Industries: Sustainable Textiles, Clothing Design and Repurposing. Springer Nature.

    Google Scholar 

  49. Sinclair R (Ed.) (2014) Textiles and fashion: Materials, Design and Technology. Elsevier.

    Google Scholar 

  50. Edgar K J, and Zhang H (2020) Antibacterial Modification of Lyocell Fiber: A Review. Carbohydrate Polymers 116932.

    Google Scholar 

  51. Eichinger D, Lotz C, and Lenring A G (1996) Lenzing Lyocell–Potential for Technical Textiles. Lenzinger Berichte 75: 69–72.

    Google Scholar 

  52. Woodings, C. (2001). New developments in biodegradable non-wovens. New Fibers, 9.

    Google Scholar 

  53. White P, Hayhurst M, Taylor J, and Slater A (2005) Lyocell Fibers. In Biodegradable and Sustainable Fibers. Woodhead Publishing: 157–190.

    Google Scholar 

  54. Park C H, Kang Y K, and Im S S (2004) Biodegradability of Cellulose Fabrics. Journal of Applied Polymer Science 94(1):248–253.

    Article  CAS  Google Scholar 

  55. Sülar V, and Devrim G (2019) Biodegradation Behavior of Different Textile Fibers: Visual, Morphological, Structural Properties and Soil Analyses. Fibers & Textiles in Eastern Europe 27(1):100–111.

    Article  CAS  Google Scholar 

  56. Warnock M, Davis K, Wolf D, and Gbur E (2009) Biodegradation of Three Cellulosic Fabrics in Soil. Summ Ark Cotton Res, 2009: 208–211.

    Google Scholar 

  57. Karamanlioglu M, Preziosi R, and Robson G D (2017) Abiotic and Biotic Environmental Degradation of the Bioplastic Polymer Poly (Lactic Acid): a Review. Polymer Degradation and Stability 137: 122–130.

    Article  CAS  Google Scholar 

  58. R. A. Young and R. M. Rowell (1987) Cellulose: Structure, Modification and Hydrolysis. Carbohydrate Research (eds.) John Wiley and Sons, New York.

    Google Scholar 

  59. Li L, Frey M, and Browning K J (2010) Biodegradability Study on Cotton and Polyester Fabrics. Journal of Engineered Fibers and fabrics 5(4).

    Google Scholar 

  60. Smith S, Ozturk M, and Frey M (2021) Soil Biodegradation of Cotton Fabrics Treated with Common Finishes. Cellulose 28(7): 4485–4494.

    Article  CAS  Google Scholar 

  61. Sharma H S S, Faughey G, and Lyons G (1999). Comparison of Physical, Chemical, and Thermal Characteristics of Water‐, Dew‐, and Enzyme‐Retted Flax Fibers. Journal of applied polymer science 74(1): 139–143.

    Article  CAS  Google Scholar 

  62. Martin N, Mouret N, Davies P, and Baley C (2013). Influence of the Degree of Retting of Flax Fibers on the Tensile Properties of Single Fibers and Short Fiber/Polypropylene Composites. Industrial crops and products 49: 755–767.

    Article  CAS  Google Scholar 

  63. Sharma H S S, Faughey G, and McCall D (1996) Effect of Sample Preparation and Heating Rate on the Differential Thermogravimetric Analysis of Flax Fibers. Journal of the Textile Institute 87(2): 249–257.

    Article  CAS  Google Scholar 

  64. Van de Velde K, and Baetens E (2001) Thermal and Mechanical Properties of Flax Fibers as Potential Composite Reinforcement. Macromolecular Materials and Engineering 286(6): 342–349.

    Article  Google Scholar 

  65. Pometto 3rd A L, Lee B T, and Johnson K E (1992). Production of an Extracellular Polyethylene-Degrading Enzyme (s) by Streptomyces Species. Applied and Environmental Microbiology 58(2): 731–733.

    Article  CAS  Google Scholar 

  66. Broda J, Kobiela-Mendrek K, Rom M, Grzybowska-Pietras J, Przybylo S, and Laszczak R (2016). Biodegradation of Wool Used for the Production of Innovative Geotextiles Designed to Erosion Control. In Natural fibers: Advances in Science and Technology Towards Industrial Applications. Springer, Dordrecht: 351–361.

    Chapter  Google Scholar 

  67. Wubbe E (2002) Harvesting the Benefits of Natural Fibers. Nonwovens Industry, Jun.

    Google Scholar 

  68. Daria M, Krzysztof L, and Jakub M (2020) Characteristics of Biodegradable Textiles Used in Environmental Engineering: A Comprehensive Review. Journal of Cleaner Production 268: 122129.

    Article  CAS  Google Scholar 

  69. Saldarriaga-Noreña H, Murillo-Tovar M A, Farooq R, Dongre R, and Riaz S (Eds.) (2019) Environmental Chemistry and Recent Pollution Control Approaches. BoD–Books on Demand.

    Google Scholar 

  70. Alimuzzaman S, Gong R H, and Akonda M (2014) Biodegradability of Nonwoven Flax Fiber Reinforced Polylactic Acid Bio composites. Polymer Composites 35(11): 2094–2102.

    Article  CAS  Google Scholar 

  71. Puls J, Wilson S A, and Hölter D (2011). Degradation of Cellulose Acetate-Based Materials: A Review. Journal of Polymers and the Environment 19(1): 152–165.

    Article  CAS  Google Scholar 

  72. Morrison R T, Boyd R N, and Noyce D S (1960). Organic Chemistry: Allyn and Bacon, Boston, Mass., 1959, xiv 948:10.75.

    Google Scholar 

  73. Han S J, Yoo Y J, and Kang H S (1995) Characterization of a Bifunctional Cellulase and Its Structural Gene: The Cell Gene of Bacillus SP. D04 HAS Exo-and Endoglucanase Activity. Journal of Biological Chemistry 270(43): 26012–26019.

    Article  CAS  Google Scholar 

  74. Fedorak P M (2005) Microbial Processes in the Degradation of Fibers-in Biodegradable and Sustainable Fibers: A Volume in Woodhead Publishing Series in Textiles, Elsevier.

    Google Scholar 

  75. Gillespie J M (1990) The Proteins of Hair and Other Hard α-Keratins. In Cellular and Molecular Biology of Intermediate Filaments. Springer, Boston, MA: 95–128.

    Chapter  Google Scholar 

  76. Zahn H, Föhles J, Nlenhaus M, Schwan A, and Spel M (1980) Wool as a biological composite structure. Industrial & Engineering Chemistry Product Research and Development 19(4): 496–501.

    Article  CAS  Google Scholar 

  77. Maclaren J A, and Milligan B (1981) Wool Science. The Chemical Reactivity of the Wool Fiber.

    Google Scholar 

  78. Korniłłowicz-Kowalska T and Bohacz J (2011). Biodegradation of Keratin Waste: Theory and Practical Aspects. Waste Management 31(8): 1689–1701.

    Article  CAS  Google Scholar 

  79. Mall J K, Sims P, and Carr C M (2002) Surface Chemical Analysis of Lipase Enzyme Treatments on Wool and Mohair. Journal of the Textile Institute, 93(1): 43–51.

    Article  CAS  Google Scholar 

  80. El‐Sayed W, Nofal R, and El‐Sayed H (2010) Use of Lipoprotein Lipase in the Improvement of Some Properties of Wool Fabrics. Coloration Technology, 126(5): 296–302.

    Article  CAS  Google Scholar 

  81. Ruffin P, Andrieu S, Biserte G, and Biguet J (1976) Sulphitolysis in keratinolysis. Biochemical proof Sabouraudia. Journal of Medical and Veterinary Mycology 14(2): 181–184.

    Article  CAS  Google Scholar 

  82. Kunert J (1989) Biochemical Mechanism of Keratin Degradation by the Actinomycete Streptomyces Fradiae and the Fungus Microsporum Gypseum: a Comparison. Journal of Basic Microbiology 29(9): 597–604.

    Article  CAS  Google Scholar 

  83. Kunert J, and Stránský Z (1988) Thiosulfate Production from Cystine by the Keratinolytic Prokaryote Streptomyces Fradiae. Archives of Microbiology 150(6): 600–601.

    Article  CAS  Google Scholar 

  84. Solazzo C, Dyer J M, Clerens S, Plowman J, Peacock E E, and Collins M J (2013) Proteomic Evaluation of the Biodegradation of Wool Fabrics in Experimental Burials. International Biodeterioration & Biodegradation 80: 48–59.

    Article  CAS  Google Scholar 

  85. Gore P M, Naebe M, Wang X, and Kandasubramanian B (2020) Silk Fibers Exhibiting Biodegradability & Super Hydrophobicity for Recovery of Petroleum Oils From Oily Wastewater. Journal of hazardous materials 389: 121–823.

    Article  CAS  Google Scholar 

  86. Müller R J (2005) Biodegradability of Polymers: Regulations and Methods for Testing. Biopolymers Online: Biology, Chemistry, Biotechnology, Applications 10.

    Google Scholar 

  87. Budwill K (1995) The Anaerobic Biodegradation of Poly (3-Hydroxyalkanoates).

    Google Scholar 

  88. Modelli A, Rondinelli G, Scandola M, Mergaert J, and Cnockaert M C (2004) Biodegradation of Chemically Modified Flax Fibers in Soil and in Vitro with Selected Bacteria. Biomacromolecules 5(2): 596–602.

    Article  CAS  Google Scholar 

  89. Chidambareswaran P, Sreenivasan S, Patil N B, Parthasarathy M S, and Srinathan B (1987) Analysis of Some Textile Blends using Their X-ray Diffraction Patterns. Textile Research Journal 57(3): 167–171.

    Article  CAS  Google Scholar 

  90. Hawley J M (2009) Understanding and Improving Textile Recycling: A Systems Perspective. In Sustainable Textiles, Woodhead Publishing: 179–199.

    Google Scholar 

  91. Ebnesajjad S (Ed.) (2012) Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications. William Andrew.

    Google Scholar 

  92. Felgueiras C, Azoia N G, Gonçalves C, Gama M, and Dourado F (2021) Trends on the Cellulose-Based Textiles: Raw Materials and Technologies. Frontiers in Bioengineering and Biotechnology 9: 202.

    Article  Google Scholar 

  93. Ellen MacArthur Foundation (2017) “A New Textiles Economy: Redesigning Fashion’s Future,” Ellen MacArthur Found.

    Google Scholar 

  94. Gonçalves T, Gaio C, and Costa E (2020) Committed vs Opportunistic Corporate and Social Responsibility Reporting. Journal of Business Research, 115: 417–427.

    Article  Google Scholar 

  95. Sangeetha J, Thangadurai D, David M, and Abdullah M A (Eds.) (2016) Environmental Biotechnology: Biodegradation, Bioremediation, and Bioconversion of Xenobiotics for Sustainable Development. CRC Press.

    Google Scholar 

  96. Ferreira S R, Lima P R L, Silva F A, and Toledo Filho R D (2014) Effect of Sisal Fiber Horrification on the Fiber-Matrix Bonding Characteristics and Bending Behavior of Cement Based Composites. In Key Engineering Materials Trans Tech Publications Ltd. 600: 421–432.

    Google Scholar 

  97. Sachidhanandham A and Thamima S (2019) Sustainable Textiles from Lotus Asian Textile Journal 28(3): 56–59.

    Google Scholar 

  98. Schué F (2000) Biopolymers from Renewable Resources. Edited by DL Kaplan Springer‐Verlag, Heidelberg, 1998: 417.

    Google Scholar 

  99. Vink E T, Rabago K R, Glassner D A, and Gruber P R (2003) Applications of Life Cycle Assessment to Nature Works™ Polylactide (PLA) Production. Polymer Degradation and Stability 80(3): 403-419.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reem Mohamed Nofal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nofal, R.M. (2022). Biodegradable Textiles, Recycling, and Sustainability Achievement. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics