Skip to main content

Biodegradation of Carbon Nanotubes

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Carbon nanotubes are unique nanomaterials with excellent physicochemical properties commonly used in energy, sensing, biomedical field, and environmental remediation. However, CNTs are inevitably released into the environment while rapidly developing. They are toxic to living organisms in the environment and are problematic to degrade under normal conditions. This chapter systematically describes the properties, applications, and toxicity of CNTs. In addition, the chapter focuses on biodegradation methods of CNTs by microbes and enzymes, along with experimental and molecular simulation methods to explore nanomaterial degradation. Finally, the economic cost of CNTs degradation is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

1D:

One dimensional

2D:

Two dimensional

ABS:

Acrylonitrile-butadiene-styrene

CNTs:

Carbon nanotubes

CNHs:

Carbon nanohorns

CNM:

Carbon nanomaterials

DLS:

Dynamic light scattering

EPO:

Eosinophil peroxidase

f-MWCNTs:

Amino-functionalized MWNTs

FTIR:

Fourier transform infrared

GO:

Graphene oxide

HRP:

Horseradish peroxidase

HMD:

Hexamethylenediamine

LiP:

Lignin peroxidase

MPO:

Myeloperoxidase

MnP:

Manganese peroxidase

MWCNTs:

Multi-wall carbon nanotubes

OH-SWCNTs:

Hydroxylated single-wall carbon nanotubes

Ox-SWCNTs:

Acid-oxidized single-wall carbon nanotubes

PA 6:

Polyamide 6

PAHs:

Polycyclic aromatic hydrocarbons

p-MWCNTs:

Purified MWNTs

p-SWCNTs:

Pristine single-wall carbon nanotubes

RGO:

Reduced graphene oxide

SCL:

Sandy clay loam

SL:

Sandy loam

SWCNTs:

Single wall carbon nanotubes

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

UV-vis:

Ultraviolet–visible

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  1. Khanna S and Islam N (2018) Carbon Nanotubes-Properties and Applications. Organic and Medicinal Chemistry International Journal 7(1):1-6

    Google Scholar 

  2. Che Y, Chen H, Gui H, Liu J, Liu B, and Zhou C (2014) Review of carbon nanotube nanoelectronics and macroelectronics. Semiconductor Science and Technology 29(7)

    Google Scholar 

  3. Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, and Memic A (2016) Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. Journal of Medicinal Chemistry 59(18):8149-8167

    Article  CAS  Google Scholar 

  4. Mishra R, Militky J, and Arumugam V, Nanorisks and nanohazards. 2019: Elsevier Ltd. 355-385.

    Google Scholar 

  5. Ali GAM, Megiel E, Romański J, Algarni H, and Chong KF (2018) A wide potential window symmetric supercapacitor by TEMPO functionalized MWCNTs. Journal of Molecular Liquids 271:31-39

    Article  CAS  Google Scholar 

  6. Sadegh H, Ali GAM, Agarwal S, and Gupta VK (2019) Surface Modification of MWCNTs with carboxylic-to-amine and their superb adsorption performance. International Journal of Environmental Research 13(3):523-531

    Article  CAS  Google Scholar 

  7. Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, and Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. Journal of Molecular Liquids 258:345-353

    Article  CAS  Google Scholar 

  8. Sharifi A, Montazerghaem L, Naeimi A, Abhari AR, Vafaee M, Ali GAM, and Sadegh H (2019) Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation. Journal of Environmental Management 247:624-632

    Article  CAS  Google Scholar 

  9. Chen M, Qin X, and Zeng G (2017) Biodegradation of Carbon Nanotubes , Graphene , and Their Derivatives. Trends in Biotechnology 35(9):836-846

    Google Scholar 

  10. Hou J, Wan B, Yang Y, Ren XM, Guo LH, and Liu JF (2016) Biodegradation of single-walled carbon nanotubes in macrophages through respiratory burst modulation. International Journal of Molecular Sciences 17(3)

    Google Scholar 

  11. Zhang L, Petersen EJ, Habteselassie MY, Mao L, and Huang Q (2013) Degradation of multiwall carbon nanotubes by bacteria. Environmental Pollution 181:335-339

    Article  CAS  Google Scholar 

  12. Saifuddin N, Raziah AZ, and Junizah AR (2013) Carbon nanotubes: A review on structure and their interaction with proteins. Journal of Chemistry 2013

    Google Scholar 

  13. Maazinejad B, Mohammadnia O, Ali GAM, Makhlouf ASH, Nadagouda MN, Sillanpää M, Asiri AM, Agarwal S, Gupta VK, and Sadegh H (2020) Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: Adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. Journal of Molecular Liquids 298:112001

    Article  CAS  Google Scholar 

  14. Hasnain MS and Nayak AK, Classification of Carbon Nanotubes, in Carbon Nanotubes for Targeted Drug Delivery. 2019, Springer Singapore: Singapore. p. 11-15.

    Chapter  Google Scholar 

  15. Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Shahryari-ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry 7:1-14

    Google Scholar 

  16. Seyed Arabi SM, Lalehloo RS, Olyai MRTB, Ali GAM, and Sadegh H (2019) Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures 106:150-155

    Article  CAS  Google Scholar 

  17. Ganesh EN (2013) Single Walled and Multi Walled Carbon Nanotube Structure. Synthesis and Applications 2(4):311-320

    Google Scholar 

  18. Alhanish A and Ali GAM, Recycling the Plastic Wastes to Carbon Nanotubes, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 701-727.

    Chapter  Google Scholar 

  19. Ali E, Hadis D, Hamzeh K, Mohammad K, Nosratollah Z, Abolfazl A, Mozhgan A, Younes H, and Woo JS (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Research Letters 9(1):393-393

    Article  CAS  Google Scholar 

  20. Meng L, Zhang X, Lu Q, Fei Z, and Dyson PJ (2012) Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors. Biomaterials 33(6):1689-1698

    Article  CAS  Google Scholar 

  21. Dream JA, Facile synthesis and characterization of graphene nanoribbons/polypyrrole nanocomposite. 2017, Pittsburg State University.

    Google Scholar 

  22. Kagkoura A and Tagmatarchis N (2020) Carbon Nanohorn-Based Electrocatalysts for Energy Conversion. Nanomaterials 10(7):1407

    Article  CAS  Google Scholar 

  23. Alsharafi M, Shubatah M, and Alameri A (2020) The hyper-zagreb index of some complement graphs. Advances in Mathematics: Scientific Journal 9(6):1857-8438

    Google Scholar 

  24. Georgakilas V, Perman JA, Tucek J, and Zboril R (2015) Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews 115(11):4744-4822

    Article  CAS  Google Scholar 

  25. Rashid MHO and Ralph SF (2017) Carbon nanotube membranes: Synthesis, properties, and future filtration applications. Nanomaterials 7(5)

    Google Scholar 

  26. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, and Alexander A (2006) Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicological Sciences 92(1):5-22

    Article  CAS  Google Scholar 

  27. Lam CW, James JT, McCluskey R, Arepalli S, and Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Critical Reviews in Toxicology 36(3):189-217

    Article  CAS  Google Scholar 

  28. Peddavarapu S and Jayendra Bharathi R (2018) Dry Sliding Wear Behaviour of AA6082-5%SiC AND AA6082-5%TiB2 Metal Matrix Composites Materials Today: Proceedings 5:14507-14511

    Google Scholar 

  29. Nanotubes C, 148. Carbon Nanotubes Hedmer, Maria; Kåredal, Monica; Gustavsson, Per; Rissler, Jenny 2013. 2013.

    Google Scholar 

  30. N M, V.P SK, S SM, G R, K VS, and T.K S (2021) Carbon nanotubes and their properties-The review. Materials Today: Proceedings (xxxx):2-5

    Google Scholar 

  31. Qiu H and Yang J, Structure and Properties of Carbon Nanotubes, in Industrial Applications of Carbon Nanotubes, H Peng, Q Li, T Chen, Editors. 2017, Elsevier Inc. p. 47-69.

    Chapter  Google Scholar 

  32. Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, and Dresselhaus MS (2001) Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Physical Review Letters 86(6):1118-1121

    Article  CAS  Google Scholar 

  33. Hou PX, Xu ST, Ying Z, Yang QH, Liu C, and Cheng HM (2003) Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41(13):2471-2476

    Article  CAS  Google Scholar 

  34. Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Colbert D, Smith KA, and Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters 74(16):2307-2309

    Article  CAS  Google Scholar 

  35. Cheung W, Pontoriero F, Taratula O, Chen AM, and He H (2010) DNA and carbon nanotubes as medicine. Advanced Drug Delivery Reviews 62(6):633-649

    Article  CAS  Google Scholar 

  36. Thostenson ET, Li C, and Chou TW (2005) Nanocomposites in context. Composites Science and Technology 65(3-4):491-516

    Article  CAS  Google Scholar 

  37. Ali GAM, Lih Teo EY, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, and Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Materials Chemistry and Physics 197:100-104

    Article  CAS  Google Scholar 

  38. Mahar B, Laslau C, Yip R, and Sun Y (2007) Development of Carbon Nanotube-Based Sensors—A Review. IEEE Sensors Journal 7(2):266-284

    Article  CAS  Google Scholar 

  39. Salah LS, Ouslimani N, Bousba D, Huynen I, Danlée Y, and Aksas H (2021) Carbon Nanotubes (CNTs) from Synthesis to Functionalized (CNTs) Using Conventional and New Chemical Approaches. Journal of Nanomaterials 2021: https://doi.org/10.1155/2021/4972770

  40. O’connell MJ, Carbon nanotubes: properties and applications. 2018: CRC press.

    Google Scholar 

  41. Kukovecz Á, Kozma G, and Kónya Z, Multi-walled carbon nanotubes, in Springer handbook of nanomaterials. 2013, Springer. p. 147-188.

    Chapter  Google Scholar 

  42. Mubarak N, Abdullah E, Jayakumar N, and Sahu J (2014) An overview on methods for the production of carbon nanotubes. Journal of Industrial and Engineering Chemistry 20(4):1186-1197

    Article  CAS  Google Scholar 

  43. Arora N and Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond and Related Materials 50:135-150

    Article  CAS  Google Scholar 

  44. Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical review B 42(15):9458

    Article  CAS  Google Scholar 

  45. Qian C, McLean B, Hedman D, and Ding F (2021) A comprehensive assessment of empirical potentials for carbon materials. APL Materials 9(6):061102

    Article  CAS  Google Scholar 

  46. Hirsch A and Vostrowsky O, Functionalization of Carbon Nanotubes, in Functional Molecular Nanostructures: -/-, AD Schlüter, Editor. 2005, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 193-237.

    Google Scholar 

  47. Luciano R and Barbero E (1994) Formulas for the stiffness of composites with periodic microstructure. International Journal of Solids and Structures 31(21):2933-2944

    Article  Google Scholar 

  48. Das R, Shahnavaz Z, Ali ME, Islam MM, and Abd Hamid SB (2016) Can We Optimize Arc Discharge and Laser Ablation for Well-Controlled Carbon Nanotube Synthesis? Nanoscale Research Letters 11(1):510

    Article  CAS  Google Scholar 

  49. Szabó A, Perri C, Csató A, Giordano G, Vuono D, and Nagy JB (2010) Synthesis methods of carbon nanotubes and related materials. Materials 3(5):3092-3140

    Article  CAS  Google Scholar 

  50. Ismail I, Yusof JM, Nong MAM, and Adnan NL, Synthesis of carbon nanotube-cotton superfiber materials, in Synthesis, Technology and Applications of Carbon Nanomaterials. 2019, Elsevier. p. 61-76.

    Chapter  Google Scholar 

  51. Ionescu MI, Zhang Y, Li R, Sun X, Abou-Rachid H, and Lussier L-S (2011) Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: parametric studies. Applied surface science 257(15):6843-6849

    Article  CAS  Google Scholar 

  52. Ma Y, Dichiara AB, He D, Zimmer L, and Bai J (2016) Control of product nature and morphology by adjusting the hydrogen content in a continuous chemical vapor deposition process for carbon nanotube synthesis. Carbon 107:171-179

    Article  CAS  Google Scholar 

  53. Fathy NA (2017) Carbon nanotubes synthesis using carbonization of pretreated rice straw through chemical vapor deposition of camphor. RSC advances 7(45):28535-28541

    Article  CAS  Google Scholar 

  54. Zaytseva O and Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture 3(1):17

    Article  CAS  Google Scholar 

  55. Salifairus M and Rusop M (2013) Synthesis of carbon nanotubes by chemical vapour deposition of camphor oil over ferrocene and aluminum isopropoxide catalyst. Advanced Materials Research 667:213-217

    Article  CAS  Google Scholar 

  56. Maruyama T, Kondo H, Ghosh R, Kozawa A, Naritsuka S, Iizumi Y, Okazaki T, and Iijima S (2016) Single-walled carbon nanotube synthesis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum. Carbon 96:6-13

    Article  CAS  Google Scholar 

  57. Allaedini G, Tasirin SM, and Aminayi P (2015) Synthesis of CNTs via chemical vapor deposition of carbon dioxide as a carbon source in the presence of NiMgO. Journal of Alloys and Compounds 647:809-814

    Article  CAS  Google Scholar 

  58. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, and Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558-1565

    Article  CAS  Google Scholar 

  59. Simon J, Flahaut E, and Golzio M (2019) Overview of carbon nanotubes for biomedical applications. Materials 12(4):1-21

    Article  CAS  Google Scholar 

  60. Marinković SN (2008) Carbon nanotubes. Journal of the Serbian Chemical Society 73(8-9):891-913

    Article  CAS  Google Scholar 

  61. Ashfaq UA, Riaz M, Yasmeen E, and Yousaf M (2017) Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Critical Reviews in Therapeutic Drug Carrier Systems 34(4):317-353

    Article  Google Scholar 

  62. Peng LM, Zhang Z, and Wang S (2014) Carbon nanotube electronics: Recent advances. Materials Today 17(9):433-442

    Article  CAS  Google Scholar 

  63. Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, and Fadeel B (2011) Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta - General Subjects 1810(3):361-373

    Article  CAS  Google Scholar 

  64. Sadegh H, Ali GAM, Abbasi Z, and Nadagoud MN (2017) Adsorption of Ammonium Ions onto Multi-Walled Carbon Nanotubes. Studia Universitatis Babes-Bolyai Chemia 62(2):233-245

    Article  CAS  Google Scholar 

  65. Hasdi ND (2020) Reviewing Methods To Prepare Activated Carbon From Various Sources. Nanoscale Research Letters 14(341):1-17

    Google Scholar 

  66. Yang B, Gong Q, Zhao L, Sun H, Ren N, Qin J, Xu J, and Yang H (2011) Preconcentration and determination of lead and cadmium in water samples with a MnO2 coated carbon nanotubes by using ETAAS. Desalination 278(1-3):65-69

    Article  CAS  Google Scholar 

  67. Wang H, Yan N, Li Y, Zhou X, Chen J, Yu B, Gong M, and Chen Q (2012) Fe nanoparticle-functionalized multi-walled carbon nanotubes: One-pot synthesis and their applications in magnetic removal of heavy metal ions. Journal of Materials Chemistry 22(18):9230-9236

    Article  CAS  Google Scholar 

  68. Romero-Guzmán L, Reyes-Gutiérrez LR, Romero-Guzmán ET, and Savedra-Labastida E (2018) Carbon Nanotube Filters for Removal of Air Pollutants from Mobile Sources. Journal of Minerals and Materials Characterization and Engineering 06(01):105-118

    Article  CAS  Google Scholar 

  69. Viswanathan G, Kane DB, and Lipowicz PJ (2004) High efficiency fine particulate filtration using carbon nanotube coatings. Advanced Materials 16(22):2045-2049

    Article  CAS  Google Scholar 

  70. Djordjevic A, Injac R, Jovic D, Mrdjanovic J, and Seke M (2013) Bioimpact of Carbon Nanomaterials. Advanced Carbon Materials and Technology 60:193-271

    Article  Google Scholar 

  71. Lanone S and Boczkowski J (2006) Biomedical Applications and Potential Health Risks of Nanomaterials: Molecular Mechanisms. Current Molecular Medicine 6(6):651-663

    Article  CAS  Google Scholar 

  72. Ema M, Hougaard KS, Kishimoto A, and Honda K (2016) Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology 10(4):391-412

    Article  CAS  Google Scholar 

  73. Zhang W, Zeng Z, Liu Z, Huang J, Xiao R, Shao B, Liu Y, Liu Y, Tang W, Zeng G, Gong J, and He Q (2020) Effects of carbon nanotubes on biodegradation of pollutants: Positive or negative? Ecotoxicology and Environmental Safety 189(October)

    Google Scholar 

  74. You Y, Das KK, Guo H, Chang CW, Navas-Moreno M, Chan JW, Verburg P, Poulson SR, Wang X, Xing B, and Yang Y (2017) Microbial Transformation of Multiwalled Carbon Nanotubes by Mycobacterium vanbaalenii PYR-1. Environmental Science and Technology 51(4):2068-2076

    Article  CAS  Google Scholar 

  75. Gottschalk F, Sun T, and Nowack B (2013) Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution 181:287-300

    Article  CAS  Google Scholar 

  76. Shrestha B, Anderson TA, Acosta-Martinez V, Payton P, and Cañas-Carrell JE (2015) The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere. Ecotoxicology and Environmental Safety 116:143-149

    Article  CAS  Google Scholar 

  77. Qian H, Ke M, Qu Q, Li X, Du B, Lu T, Sun L, and Pan X (2018) Ecological Effects of Single-Walled Carbon Nanotubes on Soil Microbial Communities and Soil Fertility. Bulletin of Environmental Contamination and Toxicology 101(4):536-542

    Article  CAS  Google Scholar 

  78. Chen M, Zeng G, Xu P, Yan M, Xiong W, and Zhou S (2017) Interaction of carbon nanotubes with microbial enzymes: conformational transitions and potential toxicity. Environmental Science: Nano 4(10):1954-1960

    CAS  Google Scholar 

  79. Ihsanullah (2019) Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separation and Purification Technology 209:307-337

    Google Scholar 

  80. Helland A, Wick P, Koehler A, Schmid K, and Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environmental Health Perspectives 115(8):1125-1131

    Article  CAS  Google Scholar 

  81. Ali GAM, Sadegh H, Yusoff MM, and Chong KF (2019) Highly stable symmetric supercapacitor from cysteamine functionalized multi-walled carbon nanotubes operating in a wide potential window. Materials Today: Proceedings 16:2273-2279

    CAS  Google Scholar 

  82. Ali GAM, Megiel E, Cieciórski P, Thalji MR, Romański J, Algarni H, and Chong KF (2020) Ferrocene functionalized multi-walled carbon nanotubes as supercapacitor electrodes. Journal of Molecular Liquids:114064

    Google Scholar 

  83. Petersen EJ, Zhang L, Mattison NT, O’Carroll DM, Whelton AJ, Uddin N, Nguyen T, Huang Q, Henry TB, Holbrook RD, and Chen KL (2011) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environmental Science and Technology 45(23):9837-9856

    Article  CAS  Google Scholar 

  84. Baun A, Hartmann NB, Grieger K, and Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. Ecotoxicology 17(5):387-395

    Article  CAS  Google Scholar 

  85. Martínez-Paz P, Negri V, Esteban-Arranz A, Martínez-Guitarte JL, Ballesteros P, and Morales M (2019) Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae. Aquatic Toxicology 209(January):42-48

    Article  CAS  Google Scholar 

  86. Chen M, Qin X, Li J, and Zeng G (2016) Probing molecular basis of single-walled carbon nanotube degradation and nondegradation by enzymes based on manganese peroxidase and lignin peroxidase. RSC Advances 6(5):3592-3599

    Article  CAS  Google Scholar 

  87. Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Liu Y, Shao B, Liang Q, Tang W, and Yuan X (2020) Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. Environment International 134(August 2019):105298-105298

    Google Scholar 

  88. Zhang M, Yang M, Nakajima H, Yudasaka M, Iijima S, and Okazaki T (2019) Diameter-Dependent Degradation of 11 Types of Carbon Nanotubes : Safety Implications. ACS Applied Nano Materials 2(7):4293–4301

    Article  CAS  Google Scholar 

  89. Kuranchie FA, Angnunavuri PN, Attiogbe F, Nerquaye-Tetteh EN, and Yun GY (2019) Occupational exposure of benzene, toluene, ethylbenzene and xylene (BTEX) to pump attendants in Ghana: Implications for policy guidance. Cogent Environmental Science 5(1):1603418-1603418

    Article  CAS  Google Scholar 

  90. Maynard AD and Kuempel ED (2005) Airborne nanostructured particles and occupational health. Journal of Nanoparticle Research 7(6):587-614

    Article  CAS  Google Scholar 

  91. Shi X, Von Dem Bussche A, Hurt RH, Kane AB, and Gao H (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nature Nanotechnology 6(11):714-719

    Article  CAS  Google Scholar 

  92. Li J, Tong L, Fang Z, Gu A, and Xu Z (2006) Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites. Polymer Degradation and Stability 91(9):2046-2052

    Article  CAS  Google Scholar 

  93. Pastrana HF, Cartagena-Rivera AX, Raman A, and Ávila A (2019) Evaluation of the elastic Young’s modulus and cytotoxicity variations in fibroblasts exposed to carbon-based nanomaterials. Journal of Nanobiotechnology 17(1):1-15

    Article  Google Scholar 

  94. Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Liu Y, Shao B, Liang Q, and Tang W (2020) Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. Environment international 134:105298

    Article  CAS  Google Scholar 

  95. Chouhan RS, Qureshi A, Yagci B, Gülgün MA, Ozguz V, and Niazi JH (2016) Biotransformation of multi-walled carbon nanotubes mediated by nanomaterial resistant soil bacteria. Chemical Engineering Journal 298:1-9

    Article  CAS  Google Scholar 

  96. Parks AN, Chandler GT, Ho KT, Burgess RM, and Ferguson PL (2015) Environmental biodegradability of [14C] single-walled carbon nanotubes by Trametes versicolor and natural microbial cultures found in New Bedford Harbor sediment and aerated wastewater treatment plant sludge. Environmental toxicology and chemistry 34(2):247-251

    Article  CAS  Google Scholar 

  97. Zhao Y, Allen BL, and Star A (2011) Enzymatic degradation of multiwalled carbon nanotubes. Journal of Physical Chemistry A 115(34):9536-9544

    Article  CAS  Google Scholar 

  98. Allen BL, Kichambare PD, Gou P, Vlasova II, Kapralov AA, Konduru N, Kagan VE, and Star A (2008) Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Letters 8(11):3899-3903

    Article  CAS  Google Scholar 

  99. Seabra AB, Paula AJ, and Durán N (2013) Redox-enzymes, cells and micro-organisms acting on carbon nanostructures transformation: A mini-review. Biotechnology Progress 29(1):1-10

    Article  CAS  Google Scholar 

  100. Liu L, Zhu C, Fana M, Chen C, Huang Y, Hao Q, Yang J, Wang H, and Dongping S (2015) Oxidation and Degradation of Graphitic Materials by Naphthalene-degrading Bacteria. The Royal Society of Chemistry 09

    Google Scholar 

  101. Ali GAM and Makhlouf ASH, Fundamentals of Waste Recycling for Nanomaterial Manufacturing, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 3-24.

    Google Scholar 

  102. Abdelbasir SM, Recycling, Management, and Valorization of Industrial Solid Wastes, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 25-63.

    Chapter  Google Scholar 

  103. Aboelazm EAA, Mohamed N, Ali GAM, Makhlouf ASH, and Chong KF, Recycling of Cobalt Oxides Electrodes from Spent Lithium-Ion Batteries by Electrochemical Method, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 91-123.

    Chapter  Google Scholar 

  104. El-Maghrabi HH, Nada AA, Soliman FS, Raynaud P, Moustafa YM, Ali GAM, and Bekheet MF, Recovery of Metal Oxide Nanomaterials from Electronic Waste Materials, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer: Cham. p. 203-227.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gomaa A. M. Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ibrahim, A.S., Farage, D.A.M., Ali, G.A.M. (2022). Biodegradation of Carbon Nanotubes. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics