Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1350))

Abstract

Cancers can be described as “rogue organs” (Balkwill FR, Capasso M, Hagemann T, J Cell Sci 125:5591–5596, 2012) because they are composed of multiple cell types and tissues. The transformed cells can recruit and alter healthy cells from surrounding tissues for their own benefit. It is these interactions that create the tumor microenvironment (TME). The TME describes the cells, factors, and extracellular matrix proteins that make up the tumor and the area around it; the biology of the TME influences tumor progression. Changes in the TME can lead to the growth and development of the tumor, the death of the tumor, or tumor metastasis. Metastasis is the process by which cancer spreads from its initial site to a different part of the body. Metastasis occurs when cancer cells enter the circulatory system or lymphatic system after they break away from a tumor. Once the cells leave, they can travel to a different part of the body and form new tumors. Therefore, understanding the TME is critical to fully understand cancer and find a way to successfully combat it. Knowledge of the TME can better inform researchers of the ability of potential therapies to reach tumor cells. It can also give researchers potential targets to kill the tumor. Instead of directly killing the cancer cells, therapies can target an aspect of the TME which could then halt tumor development or lead to tumor death. In other cases, targeting another aspect of the TME could make it easier for another therapy to kill the cancer cells, for example, using nanoparticles with collagenases to target the collagen in the surrounding environment to expose the cancer cells to drugs (Zinger A, et al, ACS Nano 13(10):11008–11021, 2019).

The TME can be split simply into cells and the structural matrix. Within these groups are fibroblasts, structural proteins, immune cells, lymphocytes, bone marrow-derived inflammatory cells, blood vessels, and signaling molecules (Spill F, et al, Curr Opin Biotechnol 40:41–48, 2016; Del Prete A, et al, Curr Opin Pharmacol 35:40–47, 2017; Arneth B, Medicina (Kaunas) 56(1), 2019). From structure to providing nutrients for growth, each of these components plays a critical role in tumor maintenance. Together these components impact cancer growth, development, and resistance to therapies (Hanahan D, Coussens LM, Cancer Cell 21:309–322, 2012). In this chapter, we will describe the TME and express the importance of the cellular and structural elements of the TME.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125(Pt 23), 5591–5596.

    Article  CAS  PubMed  Google Scholar 

  2. Zinger, A., et al. (2019). Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano, 13(10), 11008–11021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spill, F., et al. (2016). Impact of the physical microenvironment on tumor progression and metastasis. Current Opinion in Biotechnology, 40, 41–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Del Prete, A., et al. (2017). Leukocyte trafficking in tumor microenvironment. Current Opinion in Pharmacology, 35, 40–47.

    Article  PubMed  CAS  Google Scholar 

  5. Arneth, B. (2019). Tumor microenvironment. Medicina (Kaunas, Lithuania), 56(1).

    Google Scholar 

  6. Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21(3), 309–322.

    Article  CAS  PubMed  Google Scholar 

  7. Pattabiraman, D. R., & Weinberg, R. A. (2014). Tackling the cancer stem cells – What challenges do they pose? Nature Reviews Drug Discovery, 13(7), 497–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Korneev, K. V., et al. (2017). TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine, 89, 127–135.

    Article  CAS  PubMed  Google Scholar 

  9. LeBleu, V. (2015). Imaging the tumor microenvironment. Cancer Journal, 21, 174–178.

    Article  Google Scholar 

  10. Sugimoto, H., et al. (2006). Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biology & Therapy, 5, 1640–1646.

    Article  CAS  Google Scholar 

  11. Li, B., & Wang, J. H. (2011). Fibroblasts and myofibroblasts in wound healing: Force generation and measurement. Journal of Tissue Viability, 20, 108–120.

    Article  PubMed  Google Scholar 

  12. Desmoulière, A., Guyot, C., & Gabbiani, G. (2004). The stroma reaction myofibroblast: A key player in the control of tumor cell behavior. The International Journal of Developmental Biology, 48, 509–517.

    Article  PubMed  Google Scholar 

  13. Radisky, D. C., Kenny, P. A., & Bissell, M. J. (2007). Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT? Journal of Cellular Biochemistry, 101, 830–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews. Cancer, 6(5), 392–401.

    Article  CAS  PubMed  Google Scholar 

  15. Willis, B. C., duBois, R. M., & Borok, Z. (2006). Epithelial origin of myofibroblasts during fibrosis in the lung. Proceedings of the American Thoracic Society, 3, 377–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tomasek, J. J., et al. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 3, 349–363.

    Article  CAS  PubMed  Google Scholar 

  17. Spaeth, E. L., et al. (2009). Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One, 4, e4992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Brittan, M., et al. (2002). Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut, 50, 752–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhome, R., et al. (2015). A top-down view of the tumor microenvironment: structure, cells and signaling. Frontiers in Cell and Developmental Biology, 3(33).

    Google Scholar 

  20. Bonnans, C., Chou, J., & Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature Reviews. Molecular Cell Biology, 15(12), 786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Erez, N., et al. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17, 135–147.

    Article  CAS  PubMed  Google Scholar 

  22. Erler, J. T., et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 440(7088), 1222–1226.

    Article  CAS  PubMed  Google Scholar 

  23. Levental, K. R., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139(5), 891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pietras, K., et al. (2008). Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Medicine, 5(1), e19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Orimo, A., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 12(3), 335–348.

    Article  CAS  Google Scholar 

  26. Nieman, K. M., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473, 298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Armulik, A., Genové, G., & Betsholtz, C. (2011). Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21, 193–215.

    Article  CAS  PubMed  Google Scholar 

  29. O’Keeffe, M. B., et al. (2008). Investigation of pericytes, hypoxia, and vascularity in bladder tumors: Association with clinical outcomes. Oncology Research, 17, 93–101.

    Article  PubMed  Google Scholar 

  30. Yonenaga, Y., et al. (2005). Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology, 69, 159–166.

    Article  PubMed  Google Scholar 

  31. Cooke, V. G., et al. (2012). Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell, 21(1), 66–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alitalo, K. (2011). The lymphatic vasculature in disease. Nature Medicine, 17, 1371–1380.

    Article  CAS  PubMed  Google Scholar 

  33. Swartz, M. A., & Lund, A. W. (2012). Lymphatic and interstitial flow in the tumour microenvironment: Linking mechanobiology with immunity. Nature Reviews Cancer, 12, 210–219.

    Article  CAS  PubMed  Google Scholar 

  34. Tlsty, T. D., & Coussens, L. M. (2006). Tumor stroma and regulation of cancer development. Annual Review of Pathology, 1, 119–150.

    Article  CAS  PubMed  Google Scholar 

  35. Mantovani, A., et al. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.

    Article  CAS  PubMed  Google Scholar 

  36. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Article  CAS  PubMed  Google Scholar 

  37. Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141, 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Condeelis, J., & Pollard, J. W. (2006). Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124, 263–266.

    Article  CAS  PubMed  Google Scholar 

  39. Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. Journal of Pathology, 196, 254–265.

    Article  CAS  Google Scholar 

  40. Seyfried, T. N., & Huysentruyt, L. C. (2013). On the origin of cancer metastasis. Critical Reviews in Oncogenesis, 18(1–2), 43–73.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chaffer, C., & Weinberg, R. (2011). A perspective on cancer cell metastasis. Science, 331(6024), 1559–1564.

    Article  CAS  PubMed  Google Scholar 

  42. Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu, P., et al. (2011). Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology, 3(12).

    Google Scholar 

  44. Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7(3), 211–217.

    Article  CAS  PubMed  Google Scholar 

  45. Fridman, W. H., et al. (2012). The immune contexture in human tumours: Impact on clinical outcome. Nature Reviews Cancer, 12, 298–306.

    Article  CAS  PubMed  Google Scholar 

  46. Campbell, D. J., & Koch, M. A. (2011). Treg cells: Patrolling a dangerous neighborhood. Nature Medicine, 17(8), 929–930.

    Article  CAS  PubMed  Google Scholar 

  47. Tzankov, A., et al. (2008). Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica, 93, 193–200.

    Article  CAS  PubMed  Google Scholar 

  48. Koreishi, A. F., et al. (2010). The role of cytotoxic and regulatory T cells in relapsed/refractory Hodgkin lymphoma. Applied Immunohistochemistry & Molecular Morphology, 18, 206–211.

    Article  CAS  Google Scholar 

  49. Fozza, C., & Longinotti, M. (2011). T-cell traffic jam in Hodgkin’s lymphoma: Pathogenetic and therapeutic implications. Advanced Hematology.

    Google Scholar 

  50. Lin, E. Y., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66, 11238–11246.

    Article  CAS  PubMed  Google Scholar 

  51. Zumsteg, A., & Christofori, G. (2009). Corrupt policemen: Inflammatory cells promote tumor angiogenesis. Current Opinion in Oncology, 21, 60–70.

    Article  PubMed  Google Scholar 

  52. Ojalvo, L. S., et al. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. Journal of Immunology, 184, 702–712.

    Article  CAS  Google Scholar 

  53. Murdoch, C., Giannoudis, A., & Lewis, C. E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 104, 2224–2234.

    Article  CAS  PubMed  Google Scholar 

  54. Burke, B., et al. (2002). Expression of HIF-1alpha by human macrophages: Implications for the use of macrophages in hypoxia-regulated cancer gene therapy. Journal of Pathology, 196, 204–212.

    Article  CAS  Google Scholar 

  55. White, J. R., et al. (2004). Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics, 83, 1–8.

    Article  CAS  PubMed  Google Scholar 

  56. Pekarek, L. A., et al. (1995). Inhibition of tumor growth by elimination of granulocytes. Journal of Experimental Medicine, 181, 435–440.

    Article  CAS  Google Scholar 

  57. Shojaei, F., et al. (2008). Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 105, 2640–2645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12493–12498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Larco, J. E., Wuertz, B. R., & Furcht, L. T. (2004). The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clinical Cancer Research, 10, 4895–4900.

    Article  PubMed  Google Scholar 

  60. Youn, J. I., & Gabrilovich, D. I. (2010). The biology of myeloid-derived suppressor cells: The blessing and the curse of morphological and functional heterogeneity. European Journal of Immunology, 40, 2969–2975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Colombo, M. P., et al. (1992). Local cytokine availability elicits tumor rejection and systemic immunity through granulocyte-T-lymphocyte cross-talk. Cancer Research, 52, 4853–4857.

    CAS  PubMed  Google Scholar 

  62. Fridlender, Z. G., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 16, 183–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Granot, Z., et al. (2011). Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell, 20, 300–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hicks, A. M., et al. (2006). Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7753–7758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jain, R. K. (2005). Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science, 307, 58–62.

    Article  CAS  PubMed  Google Scholar 

  66. Armulik, A., Abramsson, A., & Betsholtz, C. (2005). Endothelial/pericyte interactions. Circulation Research, 97(6), 512–523.

    Article  CAS  PubMed  Google Scholar 

  67. Azzi, S., Hebda, J. K., & Gavard, J. (2013). Vascular permeability and drug delivery in cancers. Frontiers in Oncology, 3, 211.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bergers, G., & Song, S. (2005). The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology, 7(4), 452–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Parangi, S., et al. (1996). Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 93(5), 2002–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brem, H., et al. (1993). The combination of antiangiogenic agents to inhibit primary tumor growth and metastasis. Journal of Pediatric Surgery, 28(10), 1253–1125.

    Article  CAS  PubMed  Google Scholar 

  71. Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86(3), 353–364.

    Article  CAS  PubMed  Google Scholar 

  72. Bergers, G., et al. (1999). Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science, 284(5415), 808–812.

    Article  CAS  PubMed  Google Scholar 

  73. Buchanan, C. F., et al. (2012). Cross-talk between endothelial and breast cancer cells regulates reciprocal expression of angiogenic factors in vitro. Journal of Cellular Biochemistry, 113(4), 1142–1151.

    Article  CAS  PubMed  Google Scholar 

  74. Szot, C. S., et al. (2013). In vitro angiogenesis induced by tumor-endothelial cell co-culture in bilayered, collagen I hydrogel bioengineered tumors. Tissue Engineering. Part C, Methods, 19(11), 864–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu, P., Weaver, V. M., & Werb, Z. (2012). The extracellular matrix: A dynamic niche in cancer progression. Journal of Cell Biology, 196(4), 395–406.

    Article  CAS  Google Scholar 

  76. Hynes, R. O. (2009). The extracellular matrix: Not just pretty fibrils. Science, 326(5957), 1216–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Feig, C., et al. (2013). Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 20212–20217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Anderson, B. O., et al. (2011). Optimisation of breast cancer management in low-resource and middle-resource countries: Executive summary of the Breast Health Global Initiative consensus, 2010. Lancet Oncology, 12(4), 387–398.

    Article  PubMed  Google Scholar 

  79. Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123, 4195–4200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hynes, R. O. (1992). Integrins – Versatility, modulation, and signaling in cell-adhesion. Cell, 69(1), 11–25.

    Article  CAS  PubMed  Google Scholar 

  81. Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: Biological implications and therapeutic opportunities. Nature Reviews Cancer, 10(1), 9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang, C. Y., & Ogawa, R. (2010). Mechanotransduction in bone repair and regeneration. FASEB Journal, 24(10), 3625–3632.

    Article  CAS  PubMed  Google Scholar 

  83. Takayama, S., et al. (2005). The relationship between bone metastasis from human breast cancer and integrin αvβ3 expression. Anticancer Research, 25(1A), 79–83.

    CAS  PubMed  Google Scholar 

  84. Bates, R. C., et al. (2005). Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. The Journal of Clinical Investigation, 115(2), 339–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Elayadi, A. N., et al. (2007). A peptide selected by biopanning identifies the integrin αvβ6 as a prognostic biomarker for nonsmall cell lung cancer. Cancer Research, 67(12), 5889–5895.

    Article  CAS  PubMed  Google Scholar 

  86. Taylor, S. T., Hickman, J. A., & Dive, C. (2000). Epigenetic determinants of resistance to etoposide regulation of Bcl-xL and Bax by tumor microenvironmental factors. JNCI: Journal of the National Cancer Institute, 92(1), 18–23.

    Article  CAS  PubMed  Google Scholar 

  87. Slack-Davis, J. K., et al. (2009). Vascular cell adhesion Molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Research, 69(4), 1469–1476.

    Article  CAS  PubMed  Google Scholar 

  88. Nista, A., et al. (1997). Functional role of α4β1 and α5β1 integrin fibronectin receptors expressed on adriamycin-resistant MCF-7 human mammary carcinoma cells. International Journal of Cancer, 72(1), 133–141.

    Article  CAS  PubMed  Google Scholar 

  89. Stewart, R. L., & O’Connor, K. L. (2015). Clinical significance of the integrin α6β4 in human malignancies. Laboratory Investigation, 95(9), 976–986.

    Article  CAS  PubMed  Google Scholar 

  90. Chao, C., et al. (1996). A function for the integrin α6β4 in the invasive properties of colorectal carcinoma cells. Cancer Research, 56(20), 4811–4819.

    CAS  PubMed  Google Scholar 

  91. Bello, L., et al. (2001). αvβ3 and αvβ5 integrin expression in glioma periphery. Neurosurgery, 49(2), 380–390.

    CAS  PubMed  Google Scholar 

  92. Sung, V., et al. (1998). Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the αvβ3 and αvβ5 integrins. Journal of Cellular Physiology, 176(3), 482–494.

    Article  CAS  PubMed  Google Scholar 

  93. Montgomery, A. M., Reisfeld, R. A., & Cheresh, D. A. (1994). Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proceedings of the National Academy of Sciences, 91(19), 8856.

    Article  CAS  Google Scholar 

  94. Max, R., et al. (1997). Immunohistochemical analysis of integrin αvβ3 expression on tumor-associated vessels of human carcinomas. International Journal of Cancer, 71(3), 320–324.

    Article  CAS  PubMed  Google Scholar 

  95. Zutter, M. M., et al. (1995). Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proceedings of the National Academy of Sciences, 92(16), 7411.

    Article  CAS  Google Scholar 

  96. Balasubramanian, P., et al. (2013). Collagen in human tissues: Structure, function, and biomedical implications from a tissue engineering perspective. In A. Abe et al. (Eds.), Polymer composites – Polyolefin fractionation – Polymeric peptidomimetics – Collagens (pp. 173–206). Springer.

    Google Scholar 

  97. Weigelt, B., & Bissell, M. J. (2008). Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Seminars in Cancer Biology, 18, 311–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Arneth, B. (2020). Tumor microenvironment. Medicina (Kaunas), 56(1), 15.

    Article  Google Scholar 

  99. Walker, C., Mojares, E., & Del Río Hernández, A. (2018). Role of extracellular matrix in development and cancer progression. International Journal of Molecular Sciences, 19, 3028.

    Article  PubMed Central  CAS  Google Scholar 

  100. Lerner, I., et al. (2011). Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. The Journal of Clinical Investigation, 121(5), 1709–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Edovitsky, E., et al. (2004). Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. Journal of the National Cancer Institute, 96, 1219–1230.

    Article  CAS  PubMed  Google Scholar 

  102. Petz, M., et al. (2012). La enhances IRES-mediated translation of laminin B1 during malignant epithelial to mesenchymal transition. Nucleic Acids Research, 40(1), 290–302.

    Article  CAS  PubMed  Google Scholar 

  103. Boyle, S. T., et al. (2020). Acute compressive stress activates RHO/ROCK-mediated cellular processes. Small GTPases, 11(5), 354–370.

    Article  PubMed  CAS  Google Scholar 

  104. El-Haibi, C. P., et al. (2012). Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17460–17465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Heldin, P., et al. (2013). Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. Journal of Biochemistry, 154(5), 395–408.

    Article  CAS  PubMed  Google Scholar 

  106. Venning, F. A., Wullkopf, L., & Erler, J. T. (2015). Targeting ECM disrupts cancer progression. Frontiers in Oncology, 5.

    Google Scholar 

  107. Nagaharu, K., et al. (2011). Tenascin C induces epithelial-mesenchymal transition-like change accompanied by SRC activation and focal adhesion kinase phosphorylation in human breast cancer cells. American Journal of Pathology, 178(2), 754–763.

    Article  CAS  Google Scholar 

  108. Yoshida, T., et al. (1997). Co-expression of tenascin and fibronectin in epithelial and stromal cells of benign lesions and ductal carcinomas in the human breast. Journal of Pathology, 182(4), 421–428.

    Article  CAS  Google Scholar 

  109. Mennerich, D., et al. (2004). Shift of syndecan-1 expression from epithelial to stromal cells during progression of solid tumours. European Journal of Cancer, 40(9), 1373–1382.

    Article  CAS  PubMed  Google Scholar 

  110. Shen, M., et al. (2019). Tinagl1 suppresses triple-negative breast cancer progression and metastasis by simultaneously inhibiting integrin/FAK and EGFR signaling. Cancer Cell, 35(1), 64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. Freeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freeman, J.W. (2021). Structural Biology of the Tumor Microenvironment. In: Banerjee, D., Tiwari, R.K. (eds) Tumor Microenvironment: Cellular, Metabolic and Immunologic Interactions . Advances in Experimental Medicine and Biology, vol 1350. Springer, Cham. https://doi.org/10.1007/978-3-030-83282-7_4

Download citation

Publish with us

Policies and ethics