Skip to main content

Current State of Methods, Models, and Information Technologies of Genes Expression Profiling Extraction: A Review

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2021)

Abstract

An application of both the DNA microchips tests or RNA molecules sequencing experiments allows us to form the high-dimensional matrix of genes expressions, values of which are proportional to the number of the appropriate type of genes that matched the respectively investigated sample. In the general instance, the number of genes can achieve tens of thousands of ones. This fact calls the necessity to extract the genes which are able to recognize the examined samples with a high resolvable level. In this review, we analyze the current state of works focused on genes expression profiling extraction based on the application of both single methods and hybrid models. The conducted analysis has allowed us to allocate the advantages and shortcomings of the existing techniques and form the tasks which should be solved in this subject area to improve the objectivity of gene expression profiling extraction considering the type of the investigated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrayexpress – functional genomics data. https://www.ebi.ac.uk/arrayexpress/

  2. Gems: Gene expression model selector. http://www.gems-system.org/

  3. Gene expression correlates of clinical prostate cancer behavior: Cancer cell. www.cell.com/cancer-cell/fulltext/S1535-6108(02)00030--2

  4. Microarray datasets http://csse.szu.edu.cn/staff/zhuzx/Datasets.html

  5. Mldata: Repository leukemia mll. http://mldata.org/repository/data/viewslug/leukemiamll/

  6. Uci machine learning repository: Data sets. https://archive.ics.uci.edu/ml/datasets.html

  7. Alizadeh, A., Elsen, M., Davis, R.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000). https://doi.org/10.1038/35000501

    Article  Google Scholar 

  8. Almugren, N., Alshamlan, H.: A survey on hybrid feature selection methods in microarray gene expression data for cancer classification. IEEE Access 7, 78533–78548 (2019). https://doi.org/10.1109/ACCESS.2019.2922987

    Article  Google Scholar 

  9. Alon, U., Barka, N., Notterman, D., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. National Acad. Sci. United States Am. 96, 6745–6750 (1999). https://doi.org/10.1073/pnas.96.12.6745

    Article  Google Scholar 

  10. Alshamlan, H., Badr, G., Alohali, Y.: Mrmr-abc: A hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. BioMed Research International 2015, art. no. 604910 (2015). https://doi.org/10.1155/2015/604910

  11. Alshamlan, H., Badr, G., Alohali, Y.: Genetic bee colony (GBC) algorithm: a new gene selection method for microarray cancer classification. Comput. Biol. Chem. 56, 49–60 (2015). https://doi.org/10.1016/j.compbiolchem.2015.03.001

    Article  Google Scholar 

  12. Armstrong, S., Staunton, J., Silverman, L.: Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genet. 30(1), 41–47 (2002). https://doi.org/10.1038/ng765

    Article  Google Scholar 

  13. Aziz, R., Verma, C., Srivastava, N.: A novel approach for dimension reduction of microarray. Comput. Biol. Chem. 71, 161–169 (2017). https://doi.org/10.1016/j.compbiolchem.2017.10.009

    Article  Google Scholar 

  14. Babichev, S., Durnyak, B., Zhydetskyy, V., Pikh, I., Senkivskyy, V.: Application of optics density-based clustering algorithm using inductive methods of complex system analysis. In: IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and InformationTechnologies, CSIT 2019 - Proceedings pp. 169–172 (2019). https://doi.org/10.1109/STC-CSIT.2019.8929869

  15. Babichev, S., Škvor, J.: Technique of gene expression profiles extraction based on the complex use of clustering and classification methods. Diagnostics 10(8), art. no. 584 (2020). https://doi.org/10.3390/diagnostics10080584

  16. Babichev, S., Gozhyj, A., Kornelyuk, A., Lytvynenko, V.: Objective clustering inductive technology of gene expression profiles based on sota clustering algorithm. Biopolymers Cell 33(5), 379–392 (2017). https://doi.org/10.7124/bc.000961

    Article  Google Scholar 

  17. Chuang, L.Y., Yang, C.H., Wu, K.C., Yang, C.H.: A hybrid feature selection method for dna microarray data. Comput. Biol. Med. 41(4), 228–237 (2011). https://doi.org/10.1016/j.compbiomed.2011.02.004

    Article  Google Scholar 

  18. Chyrun, L., Kravets, P., Garasym, O., Gozhyj, A., Kalinina, I.: Cryptographic information protection algorithm selection optimization for electronic governance it project management by the analytic hierarchy process based on nonlinear conclusion criteria. In: CEUR Workshop Proceedings, vol. 2565, pp. 205–220 (2020)

    Google Scholar 

  19. Dashtban, M., Balafar, M.: Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts. Genomics 109(2), 91–107 (2017). https://doi.org/10.1016/j.ygeno.2017.01.004

    Article  Google Scholar 

  20. Dashtban, M., Balafar, M., Suravajhala, P.: Gene selection for tumor classification using a novel bio-inspired multi-objective approach. Genomics 110(1), 10–17 (2018). https://doi.org/10.1016/j.ygeno.2017.07.010

    Article  Google Scholar 

  21. Djellali, H., Guessoum, S., Ghoualmi-Zine, N., Layachi, S.: Fast correlation based filter combined with genetic algorithm and particle swarm on feature selection. In: 2017 5th International Conference on Electrical Engineering - Boumerdes, ICEE-B 2017, pp. 1–6 (2017). https://doi.org/10.1109/ICEE-B.2017.8192090

  22. Golub, T., Slonim, D., Tamayo, P., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 527–531 (1999). https://doi.org/10.1126/science.286.5439.531

    Article  Google Scholar 

  23. Izonin, I., Tkachenko, R., Verhun, V., et al.: An approach towards missing data management using improved grnn-sgtm ensemble method. Int. J. Eng. Sci. Technol. in press (2020). https://doi.org/10.1016/j.jestch.2020.10.005

  24. Jain, I., Jain, V., Jain, R.: Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification. Appl. Soft Comput. 62, 203–215 (2018). https://doi.org/0.1016/j.asoc.2017.09.038

  25. Khan, J., Wei, J., Ringnér, M., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Med. 7(6), 673–679 (2001). https://doi.org/10.1038/89044

    Article  Google Scholar 

  26. Lee, C.P., Leu, Y.: A novel hybrid feature selection method for microarray data analysis. Appl. Soft Comput. J. 11(1), 208–213 (2011). https://doi.org/10.1016/j.asoc.2009.11.010

    Article  Google Scholar 

  27. Li, X., Yin, M.: Multiobjective binary biogeography based optimization for feature selection using gene expression data (2013). https://doi.org/10.1109/TNB.2013.2294716

    Article  Google Scholar 

  28. Lu, H., Chen, J., Yan, K., et al.: A hybrid feature selection algorithm for gene expression data classification. Neurocomputing 256, 56–62 (2017). https://doi.org/10.1016/j.neucom.2016.07.080

    Article  Google Scholar 

  29. Lytvyn, V., Gozhyj, A., Kalinina, I., et al.: An intelligent system of the content relevance at the example of films according to user needs. In: CEUR Workshop Proceedings, vol. 2516, pp. 1–23 (2019)

    Google Scholar 

  30. Lytvyn, V., Salo, T., Vysotska, V., et al.: Identifying textual content based on thematic analysis of similar texts in big data. In: IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2019 - Proceedings, vol. 2, pp. 84–91 (2019). https://doi.org/10.1109/STC-CSIT.2019.8929808

  31. Marasanov, V., Sharko, A., Sharko, A., Stepanchikov, D.: Modeling of energy spectrum of acoustic-emission signals in dynamic deformation processes of medium with microstructure. In: 2019 IEEE 39th International Conference on Electronics and Nanotechnology, ELNANO 2019 - Proceedings, pp. 718–723 (2019). https://doi.org/10.1109/ELNANO.2019.8783809

  32. Marasanov, V., Stepanchikov, D., Sharko, A., Sharko, A.: Technique of system operator determination based on acoustic emission method. Adv. Intell. Syst. Comput. 1246, 3–22 (2021). https://doi.org/10.1007/978-3-030-54215-3_1

    Article  Google Scholar 

  33. Marasanov, V., Sharko, A., Sharko, A.: Energy spectrum of acoustic emission signals in coupled continuous media. J. Nano- Electron. Phys. 11(3), art. no. 03027 (2019). https://doi.org/10.21272/jnep.11(3).03028

  34. Marchetti, M., Coit, D., Dusza, S., et al.: Performance of gene expression profile tests for prognosis in patients with localized cutaneous melanoma: A systematic review and meta-analysis. JAMA Dermatology 156(9), 953–962 (2020). https://doi.org/10.1001/jamadermatol.2020.1731

    Article  Google Scholar 

  35. Moradi, P., Gholampour, M.: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy. Appl. Soft Comput. J. 43, 117–130 (2016). https://doi.org/10.1016/j.asoc.2016.01.044

    Article  Google Scholar 

  36. Pashaei, E., Ozen, M., Aydin, N.: Gene selection and classification approach for microarray data based on random forest ranking and bbha. In: 3rd IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2016. p. art. no. 7455896 (2016). https://doi.org/10.1109/BHI.2016.7455896

  37. Rzheuskyi, A., Kutyuk, O., Vysotska, V., et al.: The architecture of distant competencies analyzing system for it recruitment. In: IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2019 - Proceedings, vol. 3, pp. 254–261 (2019). https://doi.org/10.1109/STC-CSIT.2019.8929762

  38. Salem, H., Attiya, G., El-Fishawy, N.: Classification of human cancer diseases by gene expression profiles. Appl. Soft Comput. J. 50, 124–134 (2017). https://doi.org/10.1016/j.asoc.2016.11.026

    Article  Google Scholar 

  39. Shreem, S., Abdullah, S., Nazri, M.: Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm (2016). https://doi.org/10.1080/00207721.2014.924600

    Article  Google Scholar 

  40. Tkachenko, R., Izonin, I., Kryvinska, N., et. al.: An approach towards increasing prediction accuracy for the recovery of missing iot data based on the grnn-sgtm ensemble. Sensors (Switzerland) 20(9), art. no. 2625 (2020). https://doi.org/10.3390/s20092625

  41. Tumuluru, P., Ravi, B.: Goa-based dbn: Grasshopper optimization algorithm-based deep belief neural networks for cancer classification (2017)

    Google Scholar 

  42. Vafaee Sharbaf, F., Mosafer, S., Moattar, M.: A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization. Genomics 107(6), 231–238 (2016). https://doi.org/10.1016/j.ygeno.2016.05.001

    Article  Google Scholar 

  43. Vijay, S.A.A., GaneshKumar, P.: Fuzzy Expert System based on a Novel Hybrid Stem Cell (HSC) algorithm for classification of micro array data. J. Med. Syst. 42(4), 1–12 (2018). https://doi.org/10.1007/s10916-018-0910-0

    Article  Google Scholar 

  44. Wang, L., Song, F., Yin, H., et al.: Comparative micrornas expression profiles analysis during embryonic development of common carp, cyprinus carpio. Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics 37, art. no. 100754 (2021). https://doi.org/10.1016/j.cbd.2020.100754

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii Babichev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yasinska-Damri, L., Liakh, I., Babichev, S., Durnyak, B. (2022). Current State of Methods, Models, and Information Technologies of Genes Expression Profiling Extraction: A Review. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_5

Download citation

Publish with us

Policies and ethics