Skip to main content

Strength Properties of Wood and Wood-Based Materials

  • Chapter
  • First Online:
Springer Handbook of Wood Science and Technology

Part of the book series: Springer Handbooks ((SHB))

  • 2485 Accesses

Abstract

Knowledge of the strength of wood and wood-based materials is an important basis for the calculation and dimensioning of wooden products. This chapter describes the basics of the strength properties, test methods, important influencing parameters (e.g., moisture content, load direction, type of load, duration of load, speed of loading). Phenomenological aspects of failure on various structural levels, fracture mechanical properties as well as essential test methods such as tension, compression, shear strength, bending, torsion, and cleavage are also described. An overview is given of test specifications, strength properties of wood, and wood-based materials depending on the type of load and the direction of loading. Hardness, wear resistance, and other methods are also described. In addition to static load in short-term tests, impact resistance and fatigue as well as the influence of load duration in the static long-term test are described. In addition, selected results of the first studies to determine the properties of the molecular structure are briefly described.

Per Johan Gustafsson: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheffler, M.: Bruchmechanische Untersuchungen zur Trocknungsrißbildung an Laubholz. PhD Thesis, TU Dresden, Dresden (2000)

    Google Scholar 

  2. Steiger, R.: Mechanische Eigenschaften von Schweizer Fichten-Bauholz bei Biege-, Zug-, Druck- und kombinierter M/N Beanspruchung: Sortierung von Rund- und Schnittholz mittels Ultraschall. PhD Thesis, ETH Zurich, Zurich (1996)

    Google Scholar 

  3. Glos, P.: Holz-Zentralblatt. 108, 153–155 (1982)

    Google Scholar 

  4. Fink, G.: Influence of Varying Material Properties on the Load-Bearing Capacity of Glued Laminated Timber. PhD Thesis, ETH Zurich, Zurich (2014)

    Google Scholar 

  5. Denzler, J.K.: Modellierung des Größeneffektes bei biegebeanspruchtem Fichtenschnittholz. PhD Thesis, TU of Munich, Munich (2007)

    Google Scholar 

  6. Neuhaus, H.: Ingenieurholzbau, 3rd edn. Vieweg +Teubner, Wiesbaden (2011)

    Book  Google Scholar 

  7. Bodig, J., Jayne, B.A.: Mechanics of Wood and Wood Composites, 2nd edn. Krieger Publishing, Malabar (1993)

    Google Scholar 

  8. Niemz, P., Sonderegger, W.: Schweiz. Z. Forstwes. 154, 489–493 (2003)

    Article  Google Scholar 

  9. Knigge, W., Schulz, H.: Grundriss der Forstbenutzung. Parey, Hamburg (1966)

    Google Scholar 

  10. Görlacher, R.: Klassifizierung von Brettschichtholzlamellen durch Messung von Longitudinalschwingungen. PhD Thesis, University of Karlsruhe, Karlsruhe (1990)

    Google Scholar 

  11. Kollmann, F.: Technologie des Holzes und der Holzwerkstoffe, vol. 1, 2nd edn. Springer, Berlin (1951)

    Google Scholar 

  12. Niemz, P., Bekhta, P.: Holz-Zentralblatt. 128, 684 (2002)

    Google Scholar 

  13. Kollmann, F., Côté Jr., W.A.: Principles of Wood Science and Technology Solid Wood, vol. 1. Springer, Berlin/Heidelberg (1968)

    Book  Google Scholar 

  14. Trendelenburg, R.: Das Holz als Rohstoff. J. F. Lehmanns Verlag, Munich (1939)

    Google Scholar 

  15. Sonderegger, W., Mandallaz, D., Niemz, P.: Wood Sci. Technol. 42, 281–298 (2008)

    Article  CAS  Google Scholar 

  16. Timell, T.E.: Compression Wood in Gymnosperms. Springer, Berlin (1986)

    Book  Google Scholar 

  17. Ross, R.J. (ed.): Wood Handbook. Wood as an Engineering Material, Centenial ed. Forest Products Laboratory, Madison, (2010)

    Google Scholar 

  18. Ozyhar, T.: Moisture and Time Dependent Orthotropic Mechanical Characterization of Beech Wood. PhD Thesis, ETH Zurich, Zurich (2013)

    Google Scholar 

  19. Halligan, A.F., Schniewind, A.P.: Wood Sci. Technol. 8, 68–78 (1974)

    Article  Google Scholar 

  20. Niemz, P., Hug, S., Schnider, T.: Forstarchiv. 85, 163–168 (2014)

    Google Scholar 

  21. Sonderegger, W., Niemz, P.: Holz Roh Werkst. 64, 385–391 (2006)

    Article  Google Scholar 

  22. Autorenkollektiv: Lexikon der Holztechnik, 4th edn. Fachbuchverlag, Leipzig (1990)

    Google Scholar 

  23. Sonderegger, W., Kránitz, K., Bues, C.-T., Niemz, P.: J. Cult. Herit. 16, 883–889 (2015)

    Article  Google Scholar 

  24. Hassani, M.M., Wittel, F.K., Hering, S., Herrmann, H.J.: Comput. Method. Appl. Mech. Eng. 283, 1032–1060 (2015)

    Article  Google Scholar 

  25. Kollmann, F.: Technologie des Holzes und der Holzwerkstoffe, vol. 2, 2nd edn. Springer, Berlin (1955)

    Book  Google Scholar 

  26. Arnold, M., Steiger, R.: Mater. Struct. 40, 57–68 (2007)

    Article  CAS  Google Scholar 

  27. Sonderegger, W., Niemz, P.: Holz Roh Werkst. 62, 335–342 (2004)

    Article  Google Scholar 

  28. Burmester, A.: Holz Roh Werkst. 25, 11–25 (1967)

    Article  CAS  Google Scholar 

  29. Lawniczak, M., Raczkowski, J., Wojciechowicz, B.: Holz Roh Werkst. 22, 372–376 (1964)

    Article  CAS  Google Scholar 

  30. Madsen, B.: Structural Behaviour of Timber. Timber Engineering, North Vancouver (1992)

    Google Scholar 

  31. Nielsen, L.F.: Holz Roh Werkst. 65, 223–229 (2007)

    Article  Google Scholar 

  32. Eisenacher, G.: Charakteristik und Modellierung von Fichtenholz unter dynamischer Druckbelastung. PhD Thesis, TU Berlin, Berlin (2014)

    Google Scholar 

  33. Langendorf, G., Schuster, E., Wagenführ, R.: Rohholz, 4th edn. Fachbuchverlag, Leipzig (1990)

    Google Scholar 

  34. Hankinson, R.L.: Investigation of Crushing Strength of Spruce at Varying Angles of Grain Air Service Information Circular 3(259). U. S. Air Service (1921)

    Google Scholar 

  35. Burger, N., Glos, P.: Holz Roh Werkst. 54, 333–340 (1996)

    Article  Google Scholar 

  36. Glos, P., Schulz, H.: Holz Roh Werkst. 44, 293–298 (1986)

    Article  Google Scholar 

  37. Hübner, U.: Mechanische Kenngrößen von Buchen-, Eschen- und Robinienholz für lastabtragende Bauteile. PhD Thesis, Technical University of Graz, Graz (2013)

    Google Scholar 

  38. Khaloian Sarnaghi, A., van de Kuilen, J.W.G.: Wood Sci. Technol. 53, 535–557 (2019)

    Article  CAS  Google Scholar 

  39. Dunky, M., Niemz, P.: Holzwerkstoffe und Leime: Technologie und Einflussfaktoren. Springer, Berlin (2002)

    Book  Google Scholar 

  40. Ehlbeck, J.: Durchbiegung und Spannungen von Biegeträgern aus Holz unter Berücksichtigung der Schubverformung. PhD Thesis, Universität Karlsruhe, Karlsruhe (1967)

    Google Scholar 

  41. Colling, F.: Tragfähigkeit von Biegeträgern aus Brettschichtholz in Abhängigkeit von den festigkeitsrelevanten Einflussgrössen. PhD Thesis, University of Karlsruhe, Karlsruhe (1990)

    Google Scholar 

  42. Blass, H.J.: Tragfähigkeit von Druckstäben aus Brettschichtholz unter Berücksichtigung streuender Einflussgrössen. PhD Thesis, University of Karlsruhe, Karlsruhe (1987)

    Google Scholar 

  43. McNatt, J.D., Wellwood, R.W., Bach, L.: For. Prod. J. 40, 10–16 (1990)

    Google Scholar 

  44. Böhme, C.: Einfluss der Prüfkörperabmessungen bei Spanplatten WKI-Kurzbericht 21, 22, 23. Braunschweig (1999)

    Google Scholar 

  45. Kisser, J., Steininger, A.: Holz Roh Werkst. 10, 415–421 (1952)

    Article  CAS  Google Scholar 

  46. DeBaise, G.R., Porter, A.W., Pentoney, R.E.: Mater. Res. Standard. 6, 493–499 (1966)

    Google Scholar 

  47. Kucera, L.J., Bariska, M.: Wood Sci. Technol. 16, 241–259 (1982)

    Article  Google Scholar 

  48. Mindess, S., Bentur, A.: Wood Sci. Technol. 20, 145–155 (1986)

    Article  Google Scholar 

  49. Patton-Mallory, M., Cramer, S.M.: For. Prod. J. 37, 39–47 (1987)

    Google Scholar 

  50. Smith, I., Landis, E., Gong, M.: Fracture and Fatigue in Wood. Wiley, Chichester (2003)

    Google Scholar 

  51. Forsberg, F., Sjödahl, M., Mooser, R., Hack, E., Wyss, P.: Strain. 46, 47–60 (2010)

    Article  Google Scholar 

  52. Zauner, M.: In-Situ Synchrotron Based Tomographic Microscopy of Uniaxially Loaded Wood: In-Situ Testing Device, Procedures and Experimental Investigations. PhD Thesis, ETH Zurich, Zurich (2014)

    Google Scholar 

  53. Baensch, F.: Damage Evolution in Wood and Layered Wood Composites Monitored in Situ by Acoustic Emission, Digital Image Correlation and Synchrotron Based Tomographic Microscopy. PhD Thesis, ETH Zurich, Zurich (2015)

    Google Scholar 

  54. Keunecke, D.: Elasto-Mechanical Characterisation of Yew and Spruce Wood with Regard to Structure-Property Relationships. PhD Thesis, ETH Zurich, Zurich (2008)

    Google Scholar 

  55. Ammann, S.D.: Mechanical Performance of Glue Joints in Structural Hardwood Elements. PhD Thesis, ETH Zurich, Zurich (2015)

    Google Scholar 

  56. Burgert, I.: Die Mechanische Bedeutung der Holzstrahlen im lebenden Baum. PhD Thesis, University of Hamburg, Hamburg (2000)

    Google Scholar 

  57. Stanzl-Tschegg, S., Keunecke, D., Tschegg, E.: J. Mech. Behav. Biomed. 4, 688–698 (2011)

    Article  Google Scholar 

  58. Czaderski, C., Steiger, R., Howald, M., Olia, S., Gülzow, A., Niemz, P.: Holz Roh Werkst. 65, 383–402 (2007)

    Article  Google Scholar 

  59. Steiger, R., Gülzow, A., Czaderski, C., Howald, M., Niemz, P.: Eur. J. Wood Prod. 70, 141–153 (2012)

    Article  Google Scholar 

  60. Niemz, P.: Untersuchungen zum Kriechverhalten von Spanplatten unter besonderer Berücksichtigung des Einflusses der Werkstoffstruktur. PhD Thesis, TU Dresden (1982)

    Google Scholar 

  61. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications, 2nd edn. CRC Press, Boca Raton (1995)

    Google Scholar 

  62. Ewalds, H.L., Wanhill, R.J.H.: Fracture Mechanics. E. Arnold/Delftse U. M., London/Delft (1991)

    Google Scholar 

  63. Valentin, G.H., Boström, L.R., Gustafsson, P.J., Ranta-Maunus, A., Gowda, S.: Application of Fracture Mechanics to Timber Structures RILEM State-of-the-Art Report, Research Notes 1262. Technical Research Centre of Finland, Espoo (1991)

    Google Scholar 

  64. Danielsson, H.: Perpendicular to Grain Fracture Analysis of Wooden Structural Elements – Models and Applications. PhD Thesis, Div. of Structural Mechanics, Lund University (2013)

    Google Scholar 

  65. Aicher, S., Gustafsson, P.J., Haller, P., Petersson, H.: Fracture Mechanics Models for Strength Analysis of Timber Beams with a Hole or a Notch A Report of RILEM TC-133, TVSM-7134. Div. of Structural Mechanics, Lund University (2002)

    Google Scholar 

  66. Gustafsson, P.J.: Fracture Perpendicular to Grain – Structural Applications. In: Thelandersson, S., Larsen, H.J. (eds.) Timber Engineering. Wiley, Chichester (2003)

    Google Scholar 

  67. Niemz, P., Sonderegger, W.: Holzphysik – Physik des Holzes und der Holzwerkstoffe, 2nd edn. Carl Hanser Verlag, München (2017)

    Book  Google Scholar 

  68. Kristenson, K.B.: Crack Propagation in Wood – An Experimental and Numerical Study. Master Thesis, Dep. of Civil Engineering, Technical University of Denmark (2007)

    Google Scholar 

  69. Vasic, S., Smith, I.: Eng. Fract. Mech. 69, 745–760 (2002)

    Article  Google Scholar 

  70. Holmberg, S.: A Numerical and Experimental Study of Initial Defibration of Wood. PhD Thesis, Div. of Structural Mechanics, Lund University (1998)

    Google Scholar 

  71. Stefansson, F.: Fracture Analysis of Orthotropic Beams – Linear and Nonlinear Methods. Licentiat Thesis, Div. of Structural Mechanics, Lund University (2001)

    Google Scholar 

  72. Stefansson, F.: Mechanical Properties of Wood at Microstructural Level. Master Thesis, Div. of Structural Mechanics, Lund University (1995)

    Google Scholar 

  73. Persson, K., Gustafsson, P.J., Petersson, H.: Influence of plastic dissipation on apparent fracture energy determined by a three point bending test. In: Proceedings of COST 508 Wood Mechanics Workshop on Plasticity and Damage, University of Limerick, Ireland, pp. 123–133 (1993)

    Google Scholar 

  74. Gustafsson, P.J.: Chapter 4.7, Strength of wood beams jagged at support. In: Fracture Mechanics Studies of Non-Yielding Materials Like Concrete: Modelling of Tensile Fracture and Applied Strength Analyses. Div. of Building Materials, Lund University, PhD thesis (1985)

    Google Scholar 

  75. Boström, L.: Chapter 4, Examination of the compact tension specimen. In: Method for Determination of the Softening Behaviour of Wood and the Applicability of a Nonlinear Fracture Mechanics Model. Div. of Building Materials, Lund University (1992)

    Google Scholar 

  76. Sandhu, R.S.: A Survey of Failure Theories of Isotropic and Anisotropic Materials Technical Report AFFDL-TR-72-71. NTIS, Springfield (1972)

    Google Scholar 

  77. Tsai, S.W., Wu, E.M.: J. Compos. Mater. 5, 58–80 (1971)

    Article  Google Scholar 

  78. Norris, C.B., McKinnon, P.F.: Compression, Tension and Shear Tests on Yellow-Poplar Plywood Panels of Sizes That Do Not Buckle with Tests Made at Various Angles to the Face Grain Report No. 1328. Forest Products Laboratory, Madison (1956)

    Google Scholar 

  79. Norris, C.B.: Strength of Orthotropic Materials Subjected to Combined Stresses Report No. 1816. Forest Products Laboratory, Madison (1962)

    Google Scholar 

  80. Bodig, J., Jayne, B.A.: Mechanics of Wood and Wood Composites. Van Nostrand Reinhold, New York (1982)

    Google Scholar 

  81. Dahl, K.B.: Mechanical Properties of Clear Wood from Norway Spruce. PhD Thesis, Dep. of Structural Engineering, Norwegian University of Science and Technology, Norway (2009)

    Google Scholar 

  82. Eberhardsteiner, J.: Mechanisches Verhalten von Fichtenholz: Experimentelle Bestimmung der biaxialen Festigkeitseigenschaften. Springer, Vienna (2002)

    Book  Google Scholar 

  83. Burström, P.G.: Byggnadsmaterial – Uppbyggnad, Tillverkning Och Egenskaper. Studentlitteratur, in Swedish, Lund (2007)

    Google Scholar 

  84. EN-338: Structural Timber – Strength Classes (2009)

    Google Scholar 

  85. Leicester, R.H.: Some Aspects of Stress Fields at Sharp Notches in Orthotropic Materials Division of Forest Products Technological Paper No. 57. CSIRO, Melbourne (1971)

    Google Scholar 

  86. Sih, G.C., Paris, P.C., Irwin, G.R.: Int. J. Fract. Mech. 1, 189–203 (1965)

    Article  CAS  Google Scholar 

  87. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco (1963)

    Google Scholar 

  88. Gustafsson, P.J.: A study of strength of notched beams. Paper 21-10-1. In: Proceedings of CIB W18A Meeting 21, Canada (1988)

    Google Scholar 

  89. Rice, J.R.: J. Appl. Mech. 35, 379–386 (1968)

    Article  Google Scholar 

  90. Wu, E.M.: J. Appl. Mech. 34, 967–974 (1967)

    Article  Google Scholar 

  91. Mall, S., Murphy, J.E., Shottafer, J.E.: J. Eng. Mech. 109, 680–690 (1983)

    Article  Google Scholar 

  92. Johnson, J.A.: Wood Sci. 6, 151–158 (1973)

    Google Scholar 

  93. Wright, K., Fonselius, M.: Fracture toughness of wood – mode I. In: Proceedings of Joint Meeting CIB W18 and IUFRO S5.02, vol. 1, Italy, p. 14 (1986)

    Google Scholar 

  94. Schniewind, A.P., Centeno, J.C.: Wood Fiber. 5, 152–159 (1973)

    Google Scholar 

  95. Pearson, R.G.: Holzforschung. 28, 11–19 (1974)

    Article  Google Scholar 

  96. Riipola, K., Fonselius, M.: Evaluation of Critical J-Integral for Wood Material Research Report 528. Technical Research Centre of Finland (1988)

    Google Scholar 

  97. Gustafsson, P.J.: Mean stress and initial crack approaches. In: Fracture Mechanics Models for Strength Analysis of Timber Beams with a Hole or a Notch – A Report of RILEM TC-133, TVSM-7134. Div. of Structural Mechanics, Lund University (2002)

    Google Scholar 

  98. Masuda, M.: Theoretical consideration on fracture criteria of wood – proposal of finite small area theory. In: Proceedings of International Conference on Timber Engineering, pp. 584–595 (1988)

    Google Scholar 

  99. Mackenzie-Helnwein, P., Eberhardsteiner, J., Mang, H.A.: Comput. Mech. 31, 204–218 (2003)

    Article  Google Scholar 

  100. Schmidt, J., Kaliske, M.: Eng. Struct. 31, 571–579 (2009)

    Article  Google Scholar 

  101. Danielsson, H., Gustafsson, P.J.: Eng. Fract. Mech. 98, 137–152 (2013)

    Article  Google Scholar 

  102. Olejniczak, P., Gustafsson, P.J.: Rate effect in tangential tension fracture softening performance. In: Proceedings of COST 508 Wood Mechanics Workshop on Service Life Assessment of Wooden Structures, pp. 137–148 (1994)

    Google Scholar 

  103. Gustafsson, P.J.: Some test methods for fracture mechanics properties of wood and wood adhesive joints. In: Proceedings of RILEM TC 133-TF Workshop on Determination of Fracture Mechanics Properties of Wood, Bordeaux, p. 14 (1992)

    Google Scholar 

  104. Nordtest-1993-11: Wood: Fracture Energy in Tension Perpendicular to the Grain Nordtest Method NT BUILD 422. Nordtest, Espoo (1993)

    Google Scholar 

  105. Larsen, H.J., Gustafsson, P.J.: Fracture energy for wood in tension perpendicular to the grain, results from a joint testing project. Paper 23-19-2. In: Proceedings of CIB W18A Meeting 23 (1990)

    Google Scholar 

  106. Larsen, H.J., Gustafsson, P.J.: Fracture energy for wood in tension perpendicular to the grain. Paper 24-19-1. In: Proceedings of CIB W18A Meeting 24 (1991)

    Google Scholar 

  107. Rug, W., Badstube, M., Schöne, W.: Determination of the fracture energy of wood for tension perpendicular to the grain. Paper 23-19-1. In: Proceedings of CIB W18A Meeting 23 (1990)

    Google Scholar 

  108. Ottestam, C., Salmén, L.: Nord. Pulp Pap. Res. J. 16, 140–142 (2001)

    Article  CAS  Google Scholar 

  109. Weibull, W.: A Statistical Theory of the Strength of Materials Ingeniörsvetenskapsakademiens Handlingar No 151. Generalstabens Litografiska Anstalts Förlag, Stockholm (1939)

    Google Scholar 

  110. Weibull, W.: The Phenomenon of Rupture in Solids Ingenjörsvetenskapsakademiens Handlingar No 153. Generalstabens Litografiska Anstalts Förlag, Stockholm (1939)

    Google Scholar 

  111. Gustafsson, P.J.: Lecture Notes on Some Probabilistic Strength Calculation Models TVSM-7161. Div. of Structural Mechanics, Lund University (2014)

    Google Scholar 

  112. Dill-Langer, G.: Schädigung von Brettschichtholz bei Zugbeanspruchung rechtwinklig zur Faserrichtung. PhD Thesis, University of Stuttgart, Stuttgart (2004)

    Google Scholar 

  113. Foschi, R.O., Folz, B.R., Yao, F.Z.: Reliability-Based Design of Wood Structures Structural Research Series Report No. 34. University of British Columbia, Canada (1989)

    Google Scholar 

  114. Gustafsson, P.J., Jockwer, R., Serrano, E., Steiger, R.: A strongest link model applied to fracture propagating along grain. Paper 48-19-2. In: Proceedings of INTER Meeting 48, Croatia (2015)

    Google Scholar 

  115. Danielsson, H., Gustafsson, P.J.: Eur. J. Wood Prod. 69, 407–419 (2011)

    Article  Google Scholar 

  116. Navi, P., Sandberg, D.: Thermo-Hydro-Mechanical Processing of Wood. EPFL Press, CRC-Press, Lausanne (2012)

    Book  Google Scholar 

  117. Plath, E.: Holz Roh Werkst. 29, 377–382 (1971)

    Article  Google Scholar 

  118. Schreiber, J., Niemz, P., Mannes, D.: Holztechnologie. 48, 1–10 (2007)

    Google Scholar 

  119. Ramberg, W., Osgood, W.R.: Description of Stress-Strain Curves by Three Parameters Technical Report. National Advisory Committee for Aeronautics (1943)

    Google Scholar 

  120. Hering, S.: Charakterisierung und Modellierung der Materialeigenschaften von Rotbuchenholz zur Simulation von Holzverklebungen. PhD Thesis, ETH Zurich, Zurich (2011)

    Google Scholar 

  121. Schmidt, J.: Modellierung und numerische Analyse von Strukturen aus Holz. Habilitation Thesis, TU Dresden, Dresden (2009)

    Google Scholar 

  122. Reichel, S.: Modellierung und Simulation hygro-Mmechanisch beanspruchter Strukturen aus Holz im Kurz- und Langzeitbereich. PhD Thesis, TU Dresden, Dresden (2015)

    Google Scholar 

  123. Resch, E., Kaliske, M.: Comput. Struct. 88, 165–177 (2010)

    Article  Google Scholar 

  124. Hering, S., Saft, S., Resch, E., Niemz, P., Kaliske, M.: Holzforschung. 66, 373–380 (2012)

    Article  CAS  Google Scholar 

  125. Meyer, K.H., Mark, H.: Der Aufbau der hochpolymeren organischen Naturstoffe. Akademische Verlagsgesellschaft, Leipzig (1930)

    Google Scholar 

  126. Persson, K.: Micromechanical Modelling of Wood and Fibre Properties. PhD Thesis, Lund University, Lund (2000)

    Google Scholar 

  127. Zimmermann, T.: Fortschritte in der Nanocelluloseforschung. In: Proceedings of Tagungsband 3. Holzanatomisches Kolloquium. IHD Dresden (2015)

    Google Scholar 

  128. Harrington, J.: Hierarchical Modelling of Softwood Hygro-Elastic Properties. PhD Thesis, University of Christchurch, New Zealand, Christchurch (2002)

    Google Scholar 

  129. Rafsanjani, A.: Multiscale Poroelastic Model: Bridging the Gap from Cellular to Macroscopic Scale. PhD Thesis, ETH Zurich, Zurich (2013)

    Google Scholar 

  130. Sjölund, J.: Effect of Cell Structure Geometric and Elastic Parameters on Wood Rigidity. PhD Thesis, University of Aalto, Aalto (2015)

    Google Scholar 

  131. Keunecke, D., Hering, S., Niemz, P.: Wood Sci. Technol. 42, 633–647 (2008)

    Article  CAS  Google Scholar 

  132. Koch, G., Oelker, M., Richter, H.: Macroholzdata: Illustrations, Identification, and Information Retrieval, 07–2018 ed. delta-intkey.com (2018)

    Google Scholar 

  133. Larsen, H.J., Leijten, A.J.M., van der Put, T.A.C.M.: The design rules in Eurocode 5 for compression perpendicular to the grain – continuous and semi continuous supported beams. In: Proceedings of CIB-W18, 41st meeting, St. Andrews, Canada, 24–28 August 2008, Paper 41-6-3, pp. 1–12 (2008)

    Google Scholar 

  134. Vorreiter, L.: Holztechnologisches Handbuch, vol. 1. Fromme, Vienna (1949)

    Google Scholar 

  135. Niemz, P., Schreiber, J., Naumann, J., Stockmann, M.: Holz Roh Werkst. 65, 459–468 (2007)

    Article  Google Scholar 

  136. Hänsel, A., Kühne, G.: Holzforsch. Holzverw. 40, 1–5 (1988)

    Google Scholar 

  137. Schulte, M.: Zerstörungsfreie Prüfung elastomechanischer Eigenschaften von Holzwerkstoffplatten durch Auswertung des Eigenschwingverhaltens und Vergleich mit zerstörenden, statischen Prüfmethoden. PhD Thesis, Universität Hamburg, Hamburg (1997)

    Google Scholar 

  138. Niemz, P., Bauer, S.: Holzforsch. Holzverw. 43, 68–70 (1991)

    CAS  Google Scholar 

  139. Kruse, K.: Untersuchungen verschiedener Einflussgrössen auf die zerstörungsfreie Werkstoffprüfung von Holzwerkstoffen mit Ultraschall. PhD Thesis, University of Hamburg, Hamburg (1993)

    Google Scholar 

  140. Niemz, P., Culik, M.: Holz Roh Werkst. 61, 187–188 (2003)

    Article  Google Scholar 

  141. Wagenführ, R.: Holzatlas, 6th edn. Fachbuchverlag Leipzig im Carl Hanser Verlag, Munich (2007)

    Google Scholar 

  142. Horvath, N., Molnar, S., Niemz, P.: Holztechnologie. 49, 10–15 (2008)

    Google Scholar 

  143. Sonderegger, W., Martienssen, A., Nitsche, C., Ozyhar, T., Kaliske, M., Niemz, P.: Eur. J. Wood Prod. 71, 91–99 (2013)

    Article  CAS  Google Scholar 

  144. Chen, Z.: Torsional Fatigue of Wood. PhD Thesis, South Bank University, London (2002)

    Google Scholar 

  145. Chen, Z., Gabbitas, B., Hunt, D.: J. Mater. Sci. 41, 7247–7259 (2006)

    Article  CAS  Google Scholar 

  146. Neuhaus, F.: Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. PhD Thesis, University of Bochum, Bochum (1981)

    Google Scholar 

  147. Nördlinger, H.: Die technischen Eigenschaften der Hölzer. Cottascher Verlag, Stuttgart (1860)

    Google Scholar 

  148. Mette, H.J.: Holzkundliche Grundlagen der Forstnutzung. Dt. Landwirtschaftsverlag, Berlin (1984)

    Google Scholar 

  149. Niemz, P., Bauer, S.: Holzforsch. Holzverw. 42, 361–364 (1990)

    Google Scholar 

  150. Wimmer, R., Lucas, B.N., Oliver, W.C., Tsui, T.Y.: Wood Sci. Technol. 31, 131–141 (1997)

    Article  CAS  Google Scholar 

  151. Sonderegger, W., Niemz, P.: Holztechnologie. 50, 11–16 (2009)

    Google Scholar 

  152. Schwab, E.: Holz Roh Werkst. 48, 47–51 (1990)

    Article  Google Scholar 

  153. Walter, F., Knitsch, H.W.: Holztechnologie. 11, 32–36 (1970)

    Google Scholar 

  154. Görlacher, R.: Holz Roh Werkst. 45, 273–278 (1987)

    Article  Google Scholar 

  155. Niemz, P., Zürcher, E., Kucera, L.J., Bernatowicz, G.: Schweizer Ingenieur Architekt. 115, 991–994 (1997)

    Google Scholar 

  156. Ishiguri, F., Matsui, R., Iizuka, K., Yokota, S., Yoshizawa, N.: Holz Roh Werkst. 66, 275–280 (2008)

    Article  CAS  Google Scholar 

  157. Llana, I., Hermoso, E., Bobadilla, I., Iniguez-Gonzalez, G.: Holzforschung. 72, 549–555 (2018)

    Article  CAS  Google Scholar 

  158. Niemz, P., Sonderegger, W.: Holz-Zentralblatt. 47, 1327 (2007)

    Google Scholar 

  159. Schulz, H.: Holz Roh Werkst. 43, 215–222 (1985)

    Article  Google Scholar 

  160. Kollmann, F.: Die Esche und ihr Holz. Springer, Berlin (1941)

    Book  Google Scholar 

  161. Kollmann, F., Krech, H.: Holz Roh Werkst. 19, 113–118 (1961)

    Article  Google Scholar 

  162. Mohr, B.: Zur Interaktion der Einflüsse aus Dauerstandbelastung und Ermüdungsbeanspruchung im Ingenieurholzbau Berichte aus dem konstruktiven Ingenieurbau. TU of Munich, Munich (2001)

    Google Scholar 

  163. Gillwald, W.: Holz Roh Werkst. 24, 445–449 (1966)

    Article  Google Scholar 

  164. Bachtiar, E., Clerc, G., Brunner, A., Kaliske, M., Niemz, P.: Holzforschung. 71, 391–396 (2017)

    Article  CAS  Google Scholar 

  165. Rose, O.: Holz Roh Werkst. 23, 271–284 (1965)

    Article  Google Scholar 

  166. Mark, H.: Cellulose: physical evidence regarding its constitution (Chap. 6). In: Wise, L.E., Jahn, E.C. (eds.) Wood Chemistry, vol. 1. Reinhold Publ. Corp., New York (1952)

    Google Scholar 

  167. Jayne, B.A.: Mechanical Properties of Wood Fibre, pp. 461–476. Technical Association of Pulp and Paper Ind. (1959)

    Google Scholar 

  168. Jayne, B.A.: For. Prod. J. 10, 316–322 (1960)

    Google Scholar 

  169. Jayne, B.A.: Theory and Design of Wood and Fiber Composite Materials. Syracuse University Press, Syracuse (1972)

    Google Scholar 

  170. Tsuchikawa, S.: Appl. Spectrosc. Rev. 42, 43–71 (2007)

    Article  CAS  Google Scholar 

  171. Tsuchikawa, S., Schwanninger, M.: Appl. Spectrosc. Rev. 48, 560–587 (2013)

    Article  Google Scholar 

  172. Hofmeyer, P., Pederson, J.: Holz Roh Werkst. 53, 165–170 (1995)

    Article  Google Scholar 

  173. Meder, R., Thumm, A., Bier, H.: Holz Roh Werkst. 62, 159–164 (2002)

    Article  Google Scholar 

  174. Thumm, A., Meder, R.: J. Near Infrared Spec. 9, 117–122 (2001)

    Article  CAS  Google Scholar 

  175. Lichtenegger, K., Reiterer, A., Stanzl-Tscheg, S., Frantzl, P.: J. Struct. Biol. 128, 257–269 (1999)

    Article  CAS  Google Scholar 

  176. Keplinger, T.: Versatile Strategies for the Functionalization of Wood Cell Walls and Their Characterization. PhD Thesis, ETH Zurich, Zurich (2016)

    Google Scholar 

  177. Gierlinger, N., Schwanninger, M.: Plant Physiol. 140, 1246–1254 (2006)

    Article  CAS  Google Scholar 

  178. Kulasinski, K., Salmén, L., Derome, D., Carmeliet, J.: Cellulose. 23, 1629–1637 (2016)

    Article  CAS  Google Scholar 

  179. Salmén, L., Burgert, I.: Holzforschung. 63, 121–129 (2009)

    Article  Google Scholar 

  180. Trtik, P., Dual, J., Keunecke, D., Mannes, D., Niemz, P., Stähli, P., Kaestner, A., Groso, A., Stampanoni, M.: J. Struct. Biol. 159, 49–55 (2007)

    Article  Google Scholar 

  181. Rowell, R.M.: Handbook of Wood Chemistry and Wood Composites, 2nd edn. CRC Press, Boca Raton (2013)

    Google Scholar 

  182. Kulasinski, K.: Physical and Mechanical Aspects of Moisture Adsorption in Wood Biopolymers Investigated with Atomistic Simulations. PhD Thesis, ETH Zurich, Zurich (2015)

    Google Scholar 

  183. Derome, D., Kulasinski, K., Zhang, C., Chen, M., Carmeliet, J.: Using modeling to understand the hygromechanical and hysteretic behavior of the S2 cell wall layer of wood. In: Geitmann, A., Gril, J. (eds.) Plant Biomechanics: From Structure to Function at Multiple Scales, pp. 247–269. Springer International Publishing AG, Cham (2018)

    Chapter  Google Scholar 

  184. Geitmann, A., Gril, J.: Plant Biomechanics. From Structure to Function at Multiple Scales. Springer International Publishing AG, Cham (2018)

    Google Scholar 

  185. Saint-Venant, A.J.C.B.d.: Bull. Soc. Philomathique Paris. 1, 1–11 (1854)

    Google Scholar 

  186. Boussinesq, J.V.: Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: Principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: Mémoire suivi de notes étendues sur divers points de physique, mathematique et d’analyse, vol. 4 [Application of the Study of Potentials of Balance and Movement of Elastic-Solids: Mainly the Calculation of Deformities and Pressure That Is Produced, in These Solids, Any Efforts Exerted on a Small Part of Their Surface or Their Interior: Thesis Followed My Extended Notes on Physics, Mathematics and Analysis]. Gauthier-Villars (1885)

    Google Scholar 

  187. Rayleigh, J.W.S.: Lond. Edinb. Dublin Philos. Mag. J. Sci. 11, 283–291 (1906)

    Article  Google Scholar 

  188. Timoshenko, S.P.: Z. Angew. Math. Phys. 62, 198–209 (1913)

    Google Scholar 

  189. Lee, E.H.: J. Appl. Mech. 7, A-129–A-138 (1940)

    Article  Google Scholar 

  190. Hoppmann Jr., W.H.: J. Appl. Mech. 15, 125–136 (1948)

    Article  Google Scholar 

  191. Barnhart Jr., K.E., Goldsmith, W.: J. Appl. Mech. 24, 440–446 (1957)

    Article  Google Scholar 

  192. Goldsmith, W.: Impact: The Theory and Physical Behaviour of Colliding Solids. Edward Arnold, London (1960)

    Google Scholar 

  193. Crafton, P.A.: Shock and Vibration in Linear Systems. Harper and Brothers, New York (1961)

    Google Scholar 

  194. Kolsky, H.: Stress Waves in Solids. Dover Publications, New York (1963)

    Google Scholar 

  195. Johnson, W.: Impact Strength of Materials. Arnold, London (1972)

    Google Scholar 

  196. Graff, K.F.: Wave Motion in Elastic Solids. Dover, New York (1975)

    Google Scholar 

  197. Ewins, D.J.: Modal Testing: Theory, Practice and Application, vol. 15, 2nd edn. Letchworth: Research Studies Press, Hertfordshire (1984)

    Google Scholar 

  198. Weaver Jr., W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering, 5th edn. Wiley, New York (1990)

    Google Scholar 

  199. Clough, R.W., Penzien, J.: Dynamics of Structures. McGraw-Hill, New York (1993)

    Google Scholar 

  200. Meyers, M.A.: Dynamic Behavior of Materials. Wiley-Interscience Publication, New York (1994)

    Book  Google Scholar 

  201. Abrate, S.: Impact on Composite Structures. Cambridge University Press, Cambridge, UK (2009)

    Google Scholar 

  202. Jones, N.: Structural Impact. Cambridge University Press, Cambridge, UK (2010)

    Google Scholar 

  203. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge, UK (2010)

    Google Scholar 

  204. Evans, A.G.: Int. J. Fract. 10, 251–259 (1974)

    Article  CAS  Google Scholar 

  205. Evans, A.G., Johnson, H.: J. Mater. Sci. 10, 214–222 (1975)

    Article  CAS  Google Scholar 

  206. Nadeau, J.S., Bennett, R., Fuller, E.R.: J. Mater. Sci. 17, 2831–2840 (1982)

    Article  Google Scholar 

  207. Keeton, J.R.: Dynamic Properties of Small, Clear Specimens of Structural-Grade Timber Tech. Rep. R-573. Y-F011-05-04-003. U.S. Navy Civ. Eng. Lab., Port Hueneme (1968)

    Google Scholar 

  208. Madsen, B.: Duration of Load Tests for Dry Lumber in Bending Structural research series report № 3. University of British Columbia, Vancouver (1971)

    Google Scholar 

  209. Madsen, B.: Duration of Load Tests for Dry Lumber Subjected to Shear Structural research series report № 6. University of British Columbia, Vancouver (1972)

    Google Scholar 

  210. Madsen, B.: Duration of Load Tests for Wood in Tension Perpendicular to Grain Structural research series report № 7. University of British Columbia, Vancouver (1972)

    Google Scholar 

  211. Madsen, B.: Duration of Load Tests for Wet Lumber in Bending Structural research series report № 4. University of British Columbia, Vancouver (1972)

    Google Scholar 

  212. Madsen, B.: Can. J. Civ. Eng. 2, 270–279 (1975)

    Article  Google Scholar 

  213. Spencer, R.: Rate of loading effect in bending for Douglas-Fir lumber. In: Proceedings of 1st International Conference on Wood Fracture (1978)

    Google Scholar 

  214. Polocoșer, T.: On the Dynamics of Wood Impact. PhD Thesis, Institute for Organic and Wood-Based Materials, Technische Universität Braunschweig, Braunschweig (2017)

    Google Scholar 

  215. Elmendorf, A.: J. Frankl. Inst. 182, 771–790 (1916)

    Article  Google Scholar 

  216. Wilson, T.R.C.: Impact tests of wood. In: Proceedings of Symposium on Impact Testing of Materials, 25th Annual Meeting, pp. 55–73. American Society for Testing Materials, Philadelphia (1922)

    Google Scholar 

  217. Wilson, T.R.C.: Strength–Moisture Relations for Wood Technical Bulletin No. 282. Unites States Department of Agriculture, Washington, DC (1932)

    Google Scholar 

  218. Liska, J.A.: Effect of Rapid Loading on the Compressive and Flexural Strength of Wood USDA For. Serv. Report No. 1767. USDA For. Serv. For. Prod. Lab., Madison (1950)

    Google Scholar 

  219. Brokaw, M.P., Foster, G.W.: Effect of Rapid Loading and Duration of Stress on the Strength Properties of Wood Tested in Compression and Flexure USDA For. Prod. Lab. Report No. 1518. USDA For. Serv. For. Prod. Lab., Madison (1958)

    Google Scholar 

  220. James, W.L.: For. Prod. J. 12, 253–260 (1962)

    Google Scholar 

  221. James, W.L.: Wood Sci. 1, 15–22 (1968)

    Google Scholar 

  222. Ylinen, A.: Eur. J. Wood Prod. 21, 173–176 (1963)

    Article  Google Scholar 

  223. Ylinen, A.: Eur. J. Wood Prod. 23, 193–196 (1965)

    Article  Google Scholar 

  224. Bocchio, N., Ronca, P., van de Kuilen, J.W.G.: Impact loading tests on timber beams. In: Proceedings of Innovative Wooden Structures and Bridges, pp. 349–354. International Association for Bridge and Structural Engineering (2001)

    Google Scholar 

  225. Widmann, R., Steiger, R.: Impact loaded structural timber elements made from Swiss Grown Norway Spruce. In: Proceedings of CIB-W18 Meeting 42, Dübendorf, Switzerland. Universität Karlsruhe (2009) paper 42-6-2

    Google Scholar 

  226. Jacques, E., Lloyd, A., Braimah, A., Saatcioglu, M., Doudak, G., Abdelalim, O.: Can. J. Civ. Eng. 41, 56–64 (2014)

    Article  Google Scholar 

  227. Lacroix, D.N., Viau, C., Doudak, G.: Flexural response of glued laminated (Glulam) beams subjected to blast loads. In: Proceedings of World Conference on Timber Engineering (2014)

    Google Scholar 

  228. Gatchell, C.J., Jarvis, D.M.: Pendulum Impact Tests of Wooden and Steel Highway Guardrail Posts USDA For. Serv. Research Paper NE-311. USDA Northeastern For. Expr. Station For. Serv., Upper Darby (1974)

    Google Scholar 

  229. Coon, B.A., Reid, J.D., Rohde, J.R.: Dynamic Impact Testing of Guardrail Posts Embedded in Soil Midwest Roadside Safety Facility: MwRSF Research Report No. TRP-03-77-98. Federal Highway Administration (FHWA), Turner-Fairbank Highway Research Center, McLean (1999)

    Google Scholar 

  230. Kubojima, Y., Ohsaki, H., Kato, H., Tonosaki, M.: J. Wood Sci. 52, 202–207 (2006)

    Article  Google Scholar 

  231. Hatt, W.K., Turner, W.P.: The Purdue University Impact Machine, Proceedings, pp. 462–475. American Society for Testing and Materials (1906)

    Google Scholar 

  232. Siewert, T.A., Manahan, M.P.: Pendulum Impact Testing: A Century of Progress STP 1380. American Society for Testing and Materials, West Conshohocken (2000)

    Book  Google Scholar 

  233. ISO-17281: Plastics – Determination of Fracture Toughness (GIC and KIC) at Moderately High Loading Rates (1 m/s). International Organization for Standardization, Geneva (2002)

    Google Scholar 

  234. ASTM-E-2248-12: Test Method for Impact Testing of Miniaturized Charpy V-Notch Specimens. American Society for Testing and Materials International, West Conshohocken (2013)

    Google Scholar 

  235. Gerhards, C.C.: Effects of Type of Testing Equipment and Specimen Size on Toughness of Wood USDA For. Serv. Research Paper FPL 97. USDA For. Serv. For. Prod. Lab., Madison (1968)

    Google Scholar 

  236. Gerhards, C.C.: Effect of Duration and Rate of Loading on Strength of Wood and Wood-Based Materials USDA For. Serv. Research Paper FPL 283. USDA For. Serv. For. Prod. Lab., Madison (1977)

    Google Scholar 

  237. Drow, J.T., Markwadt, L.J., Youngquist, W.G.: Results of Impact Tests to Compare the Pendulum Impact and Toughness Test Methods USDA For. Serv. Report No. 2109. USDA For. Serv. For. Prod. Lab., Madison (1958)

    Google Scholar 

  238. DIN-52189: Prüfung von Holz: Schlagbiegeversuch, Bestimmung der Bruchschlagarbeit. Beuth, Berlin (1981)

    Google Scholar 

  239. ISO-3348: Wood – Determination of Impact Bending Strength. International Organization for Standardization, Geneva (1975)

    Google Scholar 

  240. ASTM-D-143-09: Test Methods for Small Clear Specimens of Timber. American Society for Testing and Materials International, West Conshohocken (2009)

    Google Scholar 

  241. Kollmann, F.F.P., Kuenzi, E., Stamm, A.: Principles of Wood Science and Technology Wood Based Materials, vol. 2. Springer, Berlin (1975)

    Book  Google Scholar 

  242. Molnár, S., Bezerédi, Á., Vörös, G., Pukánszky, B.: Int. J. Fract. 109, 153–168 (2001)

    Article  Google Scholar 

  243. Schonberg, W., Keer, L., Woo, T.: Int. J. Solids Struct. 23, 871–896 (1987)

    Article  Google Scholar 

  244. Chou, P.C., Flis, W.: AIAA J. 15, 455–456 (1977)

    Article  Google Scholar 

  245. Christoforou, A.P., Yigit, A.S.: J. Sound Vib. 217, 563–578 (1998)

    Article  Google Scholar 

  246. Mindess, S., Madsen, B.: Mater. Struct. 19, 49–53 (1986)

    Article  Google Scholar 

  247. Sukontasukkul, P., Lam, F., Mindess, S.: Mater. Struct. 33, 445–449 (2000)

    Article  Google Scholar 

  248. Doyle, J.: The Hardness of Wood. PhD Thesis, University of Canterbury, Christchurch (1980)

    Google Scholar 

  249. Hertz, H.: J. Reine Angew. Math. 92, 156–171 (1882)

    Article  Google Scholar 

  250. Koehler, A.: Causes of Brashness in Wood USDA For. Serv. Technical Bulletin No. 342. United States Department of Agriculture, Washington, DC (1933)

    Google Scholar 

  251. Kollmann, F.F.P.: Preuss. Holzforschungsinst. 17, 17–30 (1937)

    Google Scholar 

  252. Pettifor, C.B.: Aircr. Eng. Aerosp. Technol. 14, 248–250 (1942)

    Article  Google Scholar 

  253. Kloot, N.H.: Aust. J. Appl. Sci. 5, 183–186 (1954)

    Google Scholar 

  254. Kollmann, F.F.P., Krech, H.: Holz Roh Werkst. 18, 41–54 (1960)

    Article  Google Scholar 

  255. Keith, C.T.: For. Prod. J. 14, 285–289 (1964)

    Google Scholar 

  256. Keith, C.T.: J. Mater. 1, 759–769 (1966)

    Google Scholar 

  257. Goens, E.: Ann. Phys. 11, 649–678 (1931)

    Article  Google Scholar 

  258. Venzi, S., Priest, A.H., May, M.J.: Influence of inertial load in instrumented impact tests. In: Impact Testing of Metals, ASTM STP 466, pp. 165–180. American Society of Testing and Materials International (1970)

    Chapter  Google Scholar 

  259. Banthia, N., Mindess, S., Bentur, A., Pigeon, M.: Exp. Mech. 29, 63–69 (1989)

    Article  Google Scholar 

  260. Lagerhjelm, P.: Versuche zur Bestimmung der Dichtheit, Gleichartigkeit, Elasticität, Schmiedbarkeit und Stärke des gewalzten und geschmiedeten Stabeisens. Aus dem Schwedischen übersetzt von Dr. I. W. Pfaff [Experimental Determination of the Density, Homogeneity, Elasticity, Forgeability and Ultimate Strength of Rolled and Forged Rods. Translated from Swedish by Dr. I.W. Pfaff, 1889]. Johann Leonhard Schrag, Nürnberg (1828)

    Google Scholar 

  261. Hearmon, R.F.S.: Br. J. Appl. Phys. 9, 381–388 (1958)

    Article  Google Scholar 

  262. Hearmon, R.F.S.: Proc. Phys. Soc. 58, 78–92 (1976)

    Article  Google Scholar 

  263. Bell, E.R., Peck, E.C., Krueger, N.T.: Modulus of Elasticity of Wood Determined by Dynamic Methods USDA For. Serv. Report № 1977. USDA For. Serv. For. Prod. Lab., Madison (1954)

    Google Scholar 

  264. Burmester, A.: Holz Roh Werkst. 23, 227–236 (1965)

    Article  Google Scholar 

  265. Hardie, D., Parkins, R.N.: J. Phys. D. Appl. Phys. 2, 77–85 (1968)

    Article  Google Scholar 

  266. Kaiserlik, J.H.: Nondestructive Testing Methods to Predict Effect on Degradation of Wood: A Critical Assessment USDA For. Serv. Report No. FSGTR-FPL-19. USDA For. Serv. For. Prod. Lab., Madison (1978)

    Google Scholar 

  267. Yoshihara, H.: Holzforschung. 67, 941–948 (2013)

    Article  CAS  Google Scholar 

  268. Yoshihara, H., Yoshinobu, M.: Holzforschung. 69, 493–499 (2015)

    Article  CAS  Google Scholar 

  269. ISO-12680-1: Methods of Test for Refractory Products – Part 1: Determination of Dynamic Young’s Modulus (MOE) by Impulse Excitation of Vibration. International Organization for Standardization, Geneva (2005)

    Google Scholar 

  270. ASTM-E-1876-09: Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. American Society for Testing and Materials International, West Conshohocken (2009)

    Google Scholar 

  271. ASTM-D-6874-12: Test Methods for Nondestructive Evaluation of Wood-Based Flexural Members Using Transverse Vibration. American Society for Testing and Materials, West Conshohocken (2012)

    Google Scholar 

  272. Jansson, B.: Impact Loading of Timber Beams. Masters Thesis, University of British Columbia, Vancouver (1992)

    Google Scholar 

  273. Wood, L.W.: Relation of Strength of Wood to Duration of Load, Information Reviewed and Reaffirmed from Original 1951 Report USDA For. Serv. Report No. 1916. USDA For. Serv. For. Prod. Lab., Madison (1960)

    Google Scholar 

  274. Sekhar, A.C.: Eur. J. Wood Prod. 24, 559–563 (1966)

    Article  Google Scholar 

  275. Sekhar, A.C., Nagar, B.N.: Eur. J. Wood Prod. 23, 3–6 (1965)

    Article  Google Scholar 

  276. Pearson, R.G.: Holzforschung. 26, 153–158 (1972)

    Article  Google Scholar 

  277. Glos, P., Heimeshoff, B., Kelletshofer, W.: Holz Roh Werkst. 45, 243–249 (1987)

    Article  Google Scholar 

  278. State of the Art Report on Duration of Load Research for Lumber in North America: In: Karacabeyli, E., Soltis, L.A. (eds.) Proceedings of International Timber Engineering Conference. TRADA (1991)

    Google Scholar 

  279. Leijten, A.J.M.: Literature review of impact strength of timber and joints. In: Proceedings of World Conference on Timber Engineering (2000)

    Google Scholar 

  280. Buchar, J., Adamík, V.: Wood strength evaluation under impact loading. In: Proceedings of 39th International Conference on Experimental Stress Analysis (2001)

    Google Scholar 

  281. Botting, J.K.: Development of an FRP Reinforced Hardwood Glulam Guardrail. Masters Thesis, The University of Maine, Orono (2003)

    Google Scholar 

  282. Leijten, A.J.M.: Heron. 49, 349–359 (2004)

    Google Scholar 

  283. Gutkowski, R.M., Shigidi, A., Peterson, M.: Dynamic Impact Load Tests of a Bridge Guardrail System MPC Report No. 07-188. Mountain-Plains Consortium, Fargo (2007)

    Google Scholar 

  284. Turnbull-Grimes, C., Charlie, W.A., Gutkowski, R.M., Balogh, J.: Bus-Stop Shelters – Improved Safety Report for North Dakota State University. Colorado State University, Fort Collins (2010)

    Google Scholar 

  285. Benthien, J.T., Georg, H., Maikowski, S., Ohlmeyer, M.: Landbauforsch. Appl. Agric. For. Res. 62, 255–262 (2012)

    Google Scholar 

Download references

Acknowledgments

Sections 9.1, 9.2, 9.3, and 9.5 of this chapter include several parts that have been previously published in the following book:

Peter Niemz and Walter Sonderegger: Holzphysik, Physik des Holzes und der Holzwerkstoffe (Wood physics. Physics of wood and wood-based materials). Fachbuchverlag Leipzig im Carl Hanser Verlag, Munich 2017.

The selected paragraphs from the original publication have been translated into English, and the content has been expanded and adapted to the structure of the Springer Handbook of Wood Science and Technology. The authors and Springer are grateful to Carl Hanser Verlag Munich for kind permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Niemz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niemz, P., Sonderegger, W., Gustafsson, P.J., Kasal, B., Polocoşer, T. (2023). Strength Properties of Wood and Wood-Based Materials. In: Niemz, P., Teischinger, A., Sandberg, D. (eds) Springer Handbook of Wood Science and Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-81315-4_9

Download citation

Publish with us

Policies and ethics